Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of double-layered wavy microchannel heatsinks utilizing porous ribs with artificial neural networks
Date
2022-05-01
Author
Bayer, Özgür
Baghaei Oskouei, Seyedmohsen
Aradag, Selin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
178
views
0
downloads
Cite This
© 2022 Elsevier LtdMicrochannel heatsinks with porous media, wavy and multi-layered configurations introduce compact designs and high efficiencies in cooling applications. Current Computational Fluid Dynamics (CFD) based study bridges the concept by introducing a novel double layered microchannel heatsink with wavy up-down and porous ribs alongside each other. Since Artificial Neural Network (ANN) trained by CFD results reveals designs with better thermal and hydraulic performance with an insignificant computational time, ANN is employed for finding the best performers and effects of waviness on Nusselt number, pressure drop, and maximum temperature difference at the bottom of the microchannel for a Reynold number range of 100 < Re < 800 by defining a thermal efficiency factor. Even though the pressure drop increases in the wavy design, the thermal performance is affected positively. Nusselt number increases more than 55% for Re = 800. The thermal performance increases with the introduction of Dean vortices, especially at higher Re. The best design provides maximum bottom temperature difference of 1.2 °C, with a Thermal Efficiency Factor of 1.34. However, it is observed that better thermal efficiency factors are attained by using a wavy channel at the top layer and keeping the bottom layer straight for the final design.
Subject Keywords
Microchannel heatsink
,
Porous media
,
Secondary flow
,
Thermal efficiency factor
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126515767&origin=inward
https://hdl.handle.net/11511/97511
Journal
International Communications in Heat and Mass Transfer
DOI
https://doi.org/10.1016/j.icheatmasstransfer.2022.105984
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Investigation of secondary cooling design enhancements in thermally limited compact notebooks
Khan, Muhammad Azhar Ali; Uzgoren, Eray; Muhtaroglu, Ali (2017-01-01)
Thermal design enhancements in a thermally limited compact notebook system are investigated in this paper. System temperature, power, and fan speed are characterized under a range of activity levels. A finite element model is developed, and validated against measurements. Design enhancements improve cooling with minimum intrusion to the existing mechanical design. A passive secondary heat pipe in the system reduces the CPU temperature by 5 degrees C, and improves the system performance through increased CPU...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer
Mehmood, Haris; Nasser, Hisham; Zaidi, Syed Muhammad Hassan; Tauqeer, Tauseef; Turan, Raşit (2022-01-01)
The dopant-related issues are amongst the major performance bottleneck in crystalline silicon solar cells that can be alleviated via implementation of dopant-free layers. This work presents the implementation of tungsten oxide (WOx) and titanium oxide (TiOx) as hole- and electron-selective films for heterostructure solar cell design whereby n-type Si wafer has been passivated with ultrathin silicon oxide (SiO2) layer. Several designs have been investigated including passivated hydrogenated amorphous silicon...
On modelling of microwave heating of a ceramic material
KOZLOV, P. V.; Rafatov, İsmail; KULUMBAEV, E. B.; LELEVKIN, V. M. (2007-05-07)
A simple model is proposed and tested for simulations of ceramic processing by microwave heating. The model is based on a piecewise constant approximation of the material properties and makes it possible to separate and analyse different effects caused by the sample shape and the dependence of the material properties on temperature. Specifically, the simulation results demonstrate that microwave heating of an alumina sample can be very sensitive to a variation of its dielectric constant with temperature. Fo...
Investigation of warpage behavior of single crystal silicon on a silicon Adhesive ceramic integrated structure at cryogenic temperatures
Baloğlu, Can; Okutucu Özyurt, Hanife Tuba; Dursunkaya, Zafer (2016-03-17)
Understanding thermal stress and warpage behavior of heterogeneous component assemblies is vital in infrared sensor applications of silicon semiconductor material. The silicon semiconductor warpage behavior of the integrated structure composed of silicon material itself, an adhesive layer and a ceramic layer is analyzed by both FEM and experimental studies. The studies are performed between room temperature and 80 K. Thickness of each layer has an effect on the warpage. The silicon warpage of the initial ba...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Bayer, S. Baghaei Oskouei, and S. Aradag, “Investigation of double-layered wavy microchannel heatsinks utilizing porous ribs with artificial neural networks,”
International Communications in Heat and Mass Transfer
, vol. 134, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126515767&origin=inward.