Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Decellularized adipose tissue matrix-coated and simvastatin-loaded hydroxyapatite microspheres for bone regeneration
Date
2022-01-01
Author
Kesim, Merve G.
Durucan, Caner
Atila, Deniz
Keskin, Dilek
Tezcaner, Ayşen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
170
views
0
downloads
Cite This
© 2022 Wiley Periodicals LLC.Simvastatin (SIM)-loaded and human decellularized adipose tissue (DAT)-coated porous hydroxyapatite (HAp) microspheres were developed for the first time to investigate their potential on bone regeneration. Microspheres were loaded with SIM and then coated with DAT for modifying SIM release and improving their biological response. HAp microspheres were prepared by water-in-oil emulsion method using camphene (C10H16) as porogen followed by camphene removal by freeze-drying and sintering at 1200°C for 3 h. Sintered HAp microspheres with an average particle size of ~400 µm were porous and spherical in shape. Microspheres were incubated with 1, 2.5, and 5 mg/ml SIM stock solutions for drug loading, and drug loading was determined as 7.5 ± 0.79, 20.41 ± 1.93, and 46.26 ± 0.29 µg SIM/mg microspheres, respectively. SIM loading increased with the increase of the initial SIM loading amount. Faster SIM release was observed in DAT-coated microspheres compared to bare counterparts. Higher SaoS-2 cell attachment and proliferation were observed on DAT-coated microspheres. Significantly higher alkaline phosphatase activity of SaoS-2 cells was observed on DAT-coated microspheres containing 0.01 mg/ml SIM than all other groups (p < 0.01). DAT-coated microspheres loaded with SIM at low doses hold promise for bone tissue engineering applications.
Subject Keywords
bone tissue engineering
,
decellularized adipose tissue
,
hydroxyapatite
,
microspheres
,
simvastatin
URI
https://hdl.handle.net/11511/98447
Journal
Biotechnology and Bioengineering
DOI
https://doi.org/10.1002/bit.28154
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells
Karadas, Ozge; Yucel, Deniz; Kenar, Halime; Kose, Gamze Torun; Hasırcı, Vasıf Nejat (2014-07-01)
The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 mu m. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtain...
Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering
Dalgıç, Ali Deniz; Tezcaner, Ayşen; Keskin, Dilek; Evis, Zafer (SAGE Publications, 2018-3-15)
In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(epsilon-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentra...
Wet spun PCL scaffolds for tissue engineering
Malikmammadov, Elbay; Hasırcı, Nesrin; Endoğan Tanır, Tuğba; Department of Micro and Nanotechnology (2017)
Scaffolds produced for tissue engineering applications are promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, fibrous poly(ε-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of β-tricalcium phosphate (β-TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial activity of CS was investi...
Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering
Yedekçi, Buşra; Tezcaner, Ayşen; Evis, Zafer (2022-01-01)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolyme...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. G. Kesim, C. Durucan, D. Atila, D. Keskin, and A. Tezcaner, “Decellularized adipose tissue matrix-coated and simvastatin-loaded hydroxyapatite microspheres for bone regeneration,”
Biotechnology and Bioengineering
, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98447.