Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The recovery effect of Vitamin C on structural alterations due to Streptozotocin-Induced diabetes in rat testicular tissues
Date
2023-03-05
Author
Küçük Baloğlu, Fatma
Guldag Tas, Damla
Yilmaz, Okkes
Severcan, Feride
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
Type I Diabetes is a multisystem disease that causes alterations in carbohydrate, protein, and fat metabolisms due to hyperglycemia. It has an extensive pathology, especially the mechanism involving oxidative stress is still complex. Type I diabetes is correlated with increased formation of free radicals and decreased levels of antioxidant potential. Vitamin C (Vit C) is a powerful antioxidant that participates in antioxidant defense, protecting lipid membranes and proteins from oxidative damage by donating electrons to free radicals. The effect of type I diabetes and the recovery role of Vit C on the structure and composition of the biomolecular content of testicular tissue is still unknown. Therefore, the current study aimed to investigate the alterations in the biomolecules of rat testes due to Streptozotocin (STZ)-induced type I diabetes using Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectroscopy and histological staining. The results revealed that the biomolecular structure and composition of testicular tissue are highly affected due to the development of diabetes. We obtained decreased saturation levels and increased unsaturation index in the lipids indicating the presence of lipid peroxidation in the diabetic state. The elevated lipid peroxidation levels have been implicated in the pathogenesis of naturally occurring and chemically induced diabetes. On the other hand, the protein content of diabetic rat testicular tissue was shown to decrease considerably, indicating an increase in proteolysis processes. Supporting the ratio of protein structural and conformational change, protein secondary structural components were also found to alter substantially in the diabetic state. Diabetes was also shown to lead to a decrease in the content of nucleic acids compared to proteins. These diabetes-induced alterations were found to be substantially recovered with the administration of Vit C. Although different doses and administration types of Vit C have been reported in the literature, there is no consensus yet. Therefore, we used three different doses of Vit C in our study as high (100 mg/kg/day), medium (50 mg/kg/day) and low (15 mg/kg/day) doses intraperitoneally in the present study, and the medium dose was found to be the most effective in the recovery from the diabetes-induced structural damages on rat testicular tissue. Vit C may have a therapeutic effect to be used as a complementary therapy in the treatment of diabetes.
Subject Keywords
ATR-FTIR spectroscopy
,
Biomolecular Structure
,
Protein Secondary Structure
,
Testicular tissue
,
Type I diabetes
,
Vitamin C
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85143524644&origin=inward
https://hdl.handle.net/11511/101406
Journal
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
DOI
https://doi.org/10.1016/j.saa.2022.122149
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
The effect of diabetes mellitus on rat skeletal extensor digitorum longus muscle tissue: An FTIR study
Bozkurt, Ozlem; Bilgin, Mehmet Dincer; Severcan, Feride (Hindawi Limited, 2007)
Diabetes mellitus (DM) is a chronic disorder of carbohydrate, fat and protein metabolism, which is characterized by a defective insulin secretory response. Skeletal muscle takes role in determination of carbohydrate and lipid metabolism, therefore; it is one of the target tissues of diabetes. Herein this study, application of Fourier Transform Infrared (FTIR) spectroscopy in diabetic skeletal Extensor Digitorum Longus (EDL) muscle tissues will be presented which highlight the promise of this technique in me...
The effects of streptozotocin induced-diabetes on rat testes and the recovery role of vitamin c
Güldağ, Damla; Severcan, Feride; Department of Biology (2012)
Type I Diabetes is a multisystem disease having both biochemical and structural consequences. It causes alterations in carbohydrate, protein, and fat metabolisms due to hyperglycemia. Type I diabetes is also correlated with increased formation of free radicals and decreased levels of antioxidant potential. Lower endogeneous antioxidant amounts and elevated lipid peroxidation levels in diabetes constitute the basis of risk factors for the development of diabetic complications. These complications lead to irr...
Fourier transform infrared study of the effect of diabetes on rat liver and heart tissues in the C-H region
Severcan, Feride; Toyran, N; Kaptan, N; Turan, B (2000-10-02)
Diabetes mellitus is characterized by hyperglycemia, a relative lack of insulin. The metabolic disturbances in diabetic patients are often associated with cardiac and liver dysfunctions. Generally, experimental diabetic models in animals have been used to study diabetes-related changes in organ function, but the complexity of intact tissues can cause contradictory results. For this reason, different techniques have been used to understand the mechanisms of these dysfunctions in diabetic organs. The purpose ...
The effects of high cholesterol/high fat diet on endoplasmic reticulum stress and neuronal dysfunction in the hippocampus and cerebral cortex of APOE-/- MICE
Mengi, Naz; Yanık, Tülin; Department of Molecular Biology and Genetics (2019)
Hyperlipidemia is an obesity-associated lipid metabolism disorder with high serum total cholesterol (TC) levels and is known to be a risk factor for neurodegenerative diseases. High-fat diet (HFD) induced elevated inflammation levels accompanied by increased levels of apoptosis markers and decreased levels of synaptic proteins in the hippocampus points out a possible neuronal loss. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway is activated by endoplasmic reticulum (ER) stress. The acti...
Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by FTIR spectroscopy: a comparative study with EDL muscle
Bozkurt, Ozlem; Severcan, Mete; Severcan, Feride (2010-01-01)
Diabetes Mellitus (DM) is a metabolic disorder, characterized by abnormally high blood glucose levels due to decreased secretion or effectiveness in function of insulin. Having a role in carbohydrate and lipid metabolism, skeletal muscle is affected by the absence of insulin in diabetic conditions. This current study reports the application of Fourier transform infrared (FTIR) spectroscopy in the determination of macromolecular alterations in streptozotocin (STZ)-induced diabetic rat skeletal Soleus (SOL) m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Küçük Baloğlu, D. Guldag Tas, O. Yilmaz, and F. Severcan, “The recovery effect of Vitamin C on structural alterations due to Streptozotocin-Induced diabetes in rat testicular tissues,”
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
, vol. 288, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85143524644&origin=inward.