Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Cognitive and computational aspects of gender estimation from faces
Download
119499.pdf
Date
2002
Author
Balcı, M. Koray
Metadata
Show full item record
Item Usage Stats
120
views
0
downloads
Cite This
The aim of this work is to propose a computationally feasible and cognitively plausible model for face processing, and to develop a system for gender estima tion from face images. For this purpose, we propose a general face processing model that encapsulates all face-specific tasks. The model is inspired by the find ings from cognitive studies. We implement the core of the whole model which uses Principal Component Analysis (PCA) procedure and develop a classifier for gender estimation. As classifier, we implement a Multi Layer Perceptron (MLP). MLP is further pruned for observing the minimal input set necessary for the mtask. By our priming approach we end up with a robust and efficient classifier. We confirm the importance of higher-eigenvalued eigenvectors and also show that only a small subset of them are sufficient for gender estimation. We test our ap proach in two different face databases, one of which is the largest face database publicly available today and widely used in recent studies. Until this study, PCA approach for gender estimation has not been tested on a large database such as this one.
Subject Keywords
Face processing
,
Gender estimation
,
Principal Component Analysis (PCA)
,
Multi Layer Perceptrons (MLP)
URI
https://hdl.handle.net/11511/12179
Collections
Graduate School of Informatics, Thesis
Suggestions
OpenMETU
Core
Bilişsel Kontrolü Etkileyen Bireysel ve Durumsal Farklılıkların İncelenmesi
Mısırlısoy, Mine(2016-12-31)
Bu çalışmanın amacı bilişsel kontrol üzerinde etkisi olan bireysel ve durumsal değişkenlerin belirlenmesidir. Bilişsel kontrolün altında yatan faktörlerin araştırılması ve belirlenmesi, bilişsel kontrolü olumsuz olarak etkileyen durumsal faktörlerin ortadan kaldırılması ve bireysel faktörlerin kontrol edilebilmesi açısından önemlidir. Özellikle de trafik, ağır makine kullanımı gibi durumlarda bu etkenlerin önceden belirlenmesi kritik önem taşımaktadır.
Bilişsel süreçlerin yapay sinir ağları ile modellenesi
Gülöksüz, Aslı; Halıcı, Uğur; Talaslı, Umur(1996)
Bilişssel süreçlerin Yapay Sinir Ağları ile modellenmesini amaçlayan bu projede canlılardaki Çağrışımsal öğrenmenin iki temel çeşidi olan Koşullu Öğrenme ve Pekiştirimli Öğrenme süreçleri incelenmiştir. Koşullu öğrenmeyi modellemek üzere kullanılmakta olan Geri Döngülü Çağrışımsal Dipol (READ) devresi üzerinde öğrenmenin sönümünü modellemek üzere değişiklikler yapılarak devrenin birincil ve ikincil koşullandırma altında çalışması gözlenmiş, ayrıca birden fazla READ birimin birarada çalışması incelenmiştir. ...
Morphing Estimated Human Intention via Human-Robot Interactions
Durdu, Akif; Erkmen, İsmet; Erkmen, Aydan Müşerref; Yilmaz, Alper (2011-10-21)
Estimating and reshaping human intentions are topics of research in the field of human-robot interaction. Although works on estimating human intentions are quite well known research areas in the literature, reshaping intentions through interactions is a new significant branching in the field of human-robot interaction. In this paper, we research how the human intentions change based on his/her actions by moving the robots in a real human-robot environment. Our approach uses the Hidden Markov Model (HMM) tai...
Human body reconstruction from limited number of points
Tastan, Oguzhan; Sahillioğlu, Yusuf (2021-04-01)
We propose a novel approach for reconstructing plausible three-dimensional (3D) human body models from small number of 3D points which represent body parts. We leverage a database of 3D models of humans varying from each other by physical attributes such as age, gender, weight, and height. First we divide the bodies in database into seven semantic regions. Then, for each input region consisting of maximum 40 points, we search the database for the best matching body part. For the matching criterion, we use t...
2D/3D human pose estimation using deep convolutional neural nets
Kocabaş, Muhammed; Akbaş, Emre; Department of Computer Engineering (2019)
In this thesis, we propose algorithms to estimate 2D/3D human pose from single view images. In the first part of the thesis, we present MultiPoseNet, a novel bottom-up multiperson pose estimation architecture that combines a multi-task model with a novel assignment method. MultiPoseNet can jointly handle person detection, keypoint detection, person segmentation and pose estimation problems. The novel assignment method is implemented by the Pose Residual Network (PRN) which receives keypoint and person detec...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. K. Balcı, “Cognitive and computational aspects of gender estimation from faces,” Middle East Technical University, 2002.