An adjustable impedance matching network using RF MEMS technology

Download
2003
Ünlü, Mehmet
This thesis presents design, modeling, and fabrication of an RF MEMS adjustable impedance matching network. The device employs the basic triple stub matching technique for impedance matching. It has three adjustable length stubs which are implemented using capacitively loaded coplanar waveguides. The capacitive loading of the stubs are realized using the MEMS switches which are evenly distributed over the stubs. There are 40 MEMS bridges on each stub whichare separated with ?/40 spacing making a total of 120 MEMS switches in the structure. The variability of the stub length is accomplished by closing the MEMS switch nearest to the required stub length, and making a virtual short circuit to ground. The device is theoretically capable of doing matching to every point on the Smith chart. The device is built on coplanar waveguide transmission lines. It has a center operating frequency of 10GHz, but because of its adjustability property it is expected to work in 1-40GHz range. It has dimensions of 8950 ₉ 5720æm2. This work is the continuation of the first national work on fabrication of RF MEMS devices. The device in this work is fabricated using the surface micromachining technology in the microelectronic facilities of Middle East Technical University.

Suggestions

AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
A reconfigurable RF MEMS triple stub impedance matching network
Unlu, M.; Topalli, K.; Atasoy, H.I.; Temocin, E.U.; Istanbulluoglu, I.; Bayraktar, O.; Demir, Şimşek; Civi, O.A.; Koç, Seyit Sencer; Akın, Tayfun (2006-09-12)
This paper presents a reconligurable triple stub impedance matching network using RF MEMS technology centered at 10GHz. The device is capable of covering impedances on the whole Smith Chart. The device structure consists of three variable length stubs which are designed as distributed MEMS transmission lines and two lambda(g)/8 length CPW transmission fines connecting the stubs. The variable length stubs are implemented with 12 MEMS switches over CPW lines and CPW lines connecting the switches. lambda(g)/8 ...
A Novel Input Impedance Computation Method for Coaxial Probe Fed Microstrip Antennas by Utilizing Characteristic Modes
Cetin, Metehan; Alatan, Lale (2017-07-14)
A method to efficiently compute the input impedance of the coaxial probe fed microstrip antennas by using characteristic modes is proposed in this paper. The efficiency is achieved by defining a discontinuous source current at the feed location that models the current injected by the probe. The input impedance is simply expressed in terms of modal excitation coefficients and eigenvalues of each mode.
An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes
Eminoglu, Burak; Alper, Said Emre; Akın, Tayfun (2011-09-07)
This paper presents an optimized analytical design procedure for the drive mode analog controllers used in vibratory MEMS gyroscopes. The behaviour of the controller during start-up is analyzed in detail including the effect of the limited voltage swing of the controller circuitry. As a result, an optimum design procedure is developed for controller design, which is also experimentally verified in a practical implementation demonstrating a settling time of only 50msec without any overshoot, for a gyroscope ...
A readout circuit for QWIP infrared detector arrays using current mirroring integration
Tepegoz, M; Akın, Tayfun (2003-09-18)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution Quantum Well Infrared Photodetectors (QWIPs). The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetectors, which can be adjusted between 0 V and 3.5V. The photodetector current is mirrored to an integration capacitor which can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitances for large...
Citation Formats
M. Ünlü, “An adjustable impedance matching network using RF MEMS technology,” M.S. - Master of Science, Middle East Technical University, 2003.