Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes
Download
10.1016j.proeng.2011.12.323.pdf
Date
2011-09-07
Author
Eminoglu, Burak
Alper, Said Emre
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
327
views
140
downloads
Cite This
This paper presents an optimized analytical design procedure for the drive mode analog controllers used in vibratory MEMS gyroscopes. The behaviour of the controller during start-up is analyzed in detail including the effect of the limited voltage swing of the controller circuitry. As a result, an optimum design procedure is developed for controller design, which is also experimentally verified in a practical implementation demonstrating a settling time of only 50msec without any overshoot, for a gyroscope having a quality factor (Q-factor) of 50,000. The new design procedure makes drive mode settling times almost insensitive to the Q-factor, making it suitable to obtain very-fast-starting MEMS gyroscopes even if they are packaged under high-vacuum. (C) 2011 Published by Elsevier Ltd.
Subject Keywords
MEMS gyroscopes
,
Self-oscillation loop
,
Drive mode controller
URI
https://hdl.handle.net/11511/38386
DOI
https://doi.org/10.1016/j.proeng.2011.12.323
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
A Capacitive MEMS Accelerometer Readout with Concurrent Detection and Feedback Using Discrete Components
Terzioglu, Yunus; Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (2014-05-08)
This paper presents an analog readout method for capacitive MEMS accelerometers in which the feedback actuation and capacitive detection are achieved simultaneously on the same electrode set. The presented circuit operates in closed-loop for improved linearity, and it is constructed in a hybrid platform package in which off-the-shelf discrete components are used together with the silicon-on-glass micro-accelerometer. The system is developed as a practical solution to reduce the complexity of the readout cir...
A simple out of plane capacitive MEMS accelerometer utilizing lateral and vertical electrodes for differential sensing
Terzioglu, Yunus; Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (2015-11-01)
This paper presents an out-of-plane (z-axis) accelerometer, which incorporates the use of two different MEMS capacitive electrode structures in combination for implementing a linear closed-loop system. During the implementation, the complexity of the design and fabrication steps of the sensing element is kept at a minimum. The proposed accelerometer uses capacitive MEMS sensing element fabricated with a 4-mask process. This sensing element includes a comb finger type lateral electrode and a vertical paralle...
A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
Sonmezoglu, S.; Alper, S.E.; Akın, Tayfun (2013-06-20)
This paper presents a high performance, automatic mode-matched, single-mass, and fully-decoupled MEMS gyroscope with improved scale factor stability. The mode-matching system automatically achieves and maintains the matching between the drive and sense mode resonance frequencies with the help of dedicated frequency tuning electrodes (FTEs). This method isolates the drive and sense mode frequency response dynamics by keeping the proof mass voltage (V PM ) constant, improving the scale factor stability up to ...
An uncooled microbolometer infrared focal plane array in standard CMOS
Tezcan, Ds; Eminoglu, S; Akar, Os; Akın, Tayfun (2001-01-24)
This paper reports implementation of a low-cost microbolometer focal plane array using n-well layer in a CMOS process as the microbolometer material. N-well microbolometer structures are suspended for thermal isolation by postetching of fabricated CMOS dies using silicon bulk-micromachining techniques. Although n-well has a moderate TCR of 0.5-0.65 %/K at 300 K, it still provides a reasonable performance due to its single crystal structure which contributes low 1/f noise. Detailed thermal simulations in ANS...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Eminoglu, S. E. Alper, and T. Akın, “An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes,” 2011, vol. 25, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38386.