An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes

2011-09-07
Eminoglu, Burak
Alper, Said Emre
Akın, Tayfun
This paper presents an optimized analytical design procedure for the drive mode analog controllers used in vibratory MEMS gyroscopes. The behaviour of the controller during start-up is analyzed in detail including the effect of the limited voltage swing of the controller circuitry. As a result, an optimum design procedure is developed for controller design, which is also experimentally verified in a practical implementation demonstrating a settling time of only 50msec without any overshoot, for a gyroscope having a quality factor (Q-factor) of 50,000. The new design procedure makes drive mode settling times almost insensitive to the Q-factor, making it suitable to obtain very-fast-starting MEMS gyroscopes even if they are packaged under high-vacuum. (C) 2011 Published by Elsevier Ltd.

Suggestions

AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
A Capacitive MEMS Accelerometer Readout with Concurrent Detection and Feedback Using Discrete Components
Terzioglu, Yunus; Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (2014-05-08)
This paper presents an analog readout method for capacitive MEMS accelerometers in which the feedback actuation and capacitive detection are achieved simultaneously on the same electrode set. The presented circuit operates in closed-loop for improved linearity, and it is constructed in a hybrid platform package in which off-the-shelf discrete components are used together with the silicon-on-glass micro-accelerometer. The system is developed as a practical solution to reduce the complexity of the readout cir...
A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
Sonmezoglu, S.; Alper, S.E.; Akın, Tayfun (2013-06-20)
This paper presents a high performance, automatic mode-matched, single-mass, and fully-decoupled MEMS gyroscope with improved scale factor stability. The mode-matching system automatically achieves and maintains the matching between the drive and sense mode resonance frequencies with the help of dedicated frequency tuning electrodes (FTEs). This method isolates the drive and sense mode frequency response dynamics by keeping the proof mass voltage (V PM ) constant, improving the scale factor stability up to ...
A simple out of plane capacitive MEMS accelerometer utilizing lateral and vertical electrodes for differential sensing
Terzioglu, Yunus; Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (2015-11-01)
This paper presents an out-of-plane (z-axis) accelerometer, which incorporates the use of two different MEMS capacitive electrode structures in combination for implementing a linear closed-loop system. During the implementation, the complexity of the design and fabrication steps of the sensing element is kept at a minimum. The proposed accelerometer uses capacitive MEMS sensing element fabricated with a 4-mask process. This sensing element includes a comb finger type lateral electrode and a vertical paralle...
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
Citation Formats
B. Eminoglu, S. E. Alper, and T. Akın, “An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes,” 2011, vol. 25, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38386.