Probabilistic seismic hazard assessment for Eskişehir

Genç, Gence
The purpose of this study is to develop probabilistic hazard maps for Eskisehir including ءPeak Ground Acceleration̕ values for 10% probability of exceedance in 50-year and 100-year periods at different site classes. A seismotectonic map has been prepared in the Geographical Information Systems environment by compiling instrumental seismicity and neotectonic data for the study area. The seismic sources have been defined spatially in six areal zones, characterized by a commonly used recurrence law and a maximum magnitude value. Four attenuation relationships have been selected being one of them totaly developed from the strong-motion records of Turkey. After the implementation of a seismic hazard model by using SEISRISK software, the probabilistic seismic hazard curves and maps were developed based on the selected attenuation relationships, at ءrock̕ and ءsoil̕ sites, with a probability of exceedance of 10% in 50-year and 100-year periods. At rock sites the highest levels of hazard were calculated based on the predictive relationship of Abrahamson and Silva (1996), whereas the lowest ones based on the one of Boore et al. (1996). On the other hand the highest hazard levels were determined at soil sites based on the attenuation relationship of Ambraseys et al. (1996), whereas the lowest ones based on the one of Boore et al. (1997). For Eskisehir, the peak ground acceleration values calculated based on attenuation relationship by Boore et al. (1997) were found to be applicable for 10% probability of exceedance in 50 and 100 years, taking into consideration the fact that a considerable portion of the city is founded over alluviums.


Practical tools for ranking and selection of groundmotion prediction equations (GMPEs) for probabilistic seismic hazard assessment and development of a regional GMPE
Kale, Özkan; Akkar, Sinan; Danciu, Laurentiu; Department of Civil Engineering (2014)
This study starts summarizing the progresses in ground-motion databases and ground-motion models in pan-European region and consequent seismic hazard comparisons conducted for individual local and global predictive models. Then, the study presents the compilation of the Middle East region and Turkish ground-motion databases with principle seismological features to be mainly used in predictive model selection process in these regions. In the following step, using a high standard subset of the Middle East gro...
Probabilistic seismic hazard assessment for east anatolian fault zone using planar source models
Menekşe, Akın; Gülerce, Zeynep; Department of Civil Engineering (2015)
The objective of this study is to perform probabilistic seismic hazard assessment (PSHA) using planar seismic source characterization models for East Anatolian Fault Zone (EAFZ) and to update the design ground motions to be used in the region. Development of planar seismic source models requires the definition of source geometry in terms of fault length, fault width, fault plane angles and segmentation points for each segment and associating the observed seismicity with defined fault systems. This complicat...
Effects of seismic source model parameters on the probabilistic seismic hazard assessment results
Vakilinezhad, Marjan; Gülerce, Zeynep; Department of Civil Engineering (2015)
The inputs to the Probabilistic Seismic Hazard Analysis (PSHA) contain large uncertainties regarding the seismic source model parameters; therefore, the results may vary significantly due to subjective judgment and interpretation of the limited data. The objective of this study is to show the effect of seismic source model on the hazard results by quantifying the difference in the design ground motions for different risk levels at different locations around an active tectonic structure. Analysis showed that...
Probabilistic seismic hazard assessment of Eastern Marmara and evaluation of Turkish Earthquake Code requirements
Ocak, Recai Soner; Gülerce, Zeynep; Department of Civil Engineering (2011)
The primary objective of this study is to evaluate the seismic hazard in the Eastern Marmara Region using improved seismic source models and enhanced ground motion prediction models by probabilistic approach. Geometry of the fault zones (length, width, dip angle, segmentation points etc.) is determined by the help of available fault maps and traced source lines on the satellite images. State of the art rupture model proposed by USGS Working Group in 2002 is applied to the source system. Composite reoccurren...
Architecture and disaster: a holistic and risk-based building inspection professional training model for practicing architects in Turkey
Özden, Ali Tolga; Erkılıç Bayar, Mualla; Department of Architecture (2013)
Interaction of human-induced factors with natural hazards results in diverse uncertainties and risks among the built environment. Impacts of disaster events experienced in Turkey have revealed the vulnerability of the social, economic, and physical environments along with the various insufficiencies of awareness, legislation, practice and building inspection concepts. The shift towards risk-based disasters policy among the international agenda influences the national disaster policies and efforts. Parallel ...
Citation Formats
G. Genç, “Probabilistic seismic hazard assessment for Eskişehir,” M.S. - Master of Science, Middle East Technical University, 2004.