InSb AND InAsSb infrared photodiodes on alternative substrates and InP/InGaAs quantum well infrared photodetectors : pixel and focal plane array performance

Özer, Selçuk
InAsxSb1-x (Indium Arsenide Antimonide) is an important low bandgap semiconductor whose high quality growth on GaAs or Si substrates is indispensible for low cost, large format infrared focal plane arrays (FPAs). Quantum well infrared photodetector (QWIP) technology, relying on mature semiconductors, is also promising for the above purpose. While AlGaAs/GaAs has been the standard material system for QWIPs, the search for alternative materials is needed for better performance. This thesis reports a detailed investigation of molecular beam epitaxy grown mid-wavelength infrared InAsxSb1-x photodiodes on alternative substrates, and long wavelength infrared InP/InGaAs QWIPs. In the first part of the study, InSb and InAs0.8Sb0.2 photodiodes grown on Si and GaAs substrates are investigated to reveal the performance degrading mechanisms due to large lattice mismatch. InAs0.8Sb0.2/GaAs photodiodes yield peak detectivities of 1.4₉1010 and 7.5₉108 cmHzư/W at 77 K and 240 K, respectively, showing that the alloy is promising for both cooled and near room temperature detectors. Under moderate reverse bias, 80 K RoA product limiting mechanism is trap assisted tunneling, which introduces considerable 1/f noise. InSb/Si photodiodes display peak 77 K detectivity as high as ~1₉1010 cmHz 1/2/W and reasonably high peak quantum efficiency in spite of large lattice mismatch. RoA product of detectors at 80 K is limited by Ohmic leakage with small activation energy (25 meV). Bias and temperature dependence of 1/f noise is in reasonable agreement with Kleinpenning̕s mobility fluctuation model, confirming the validity of this approach. The second part of the study concentrates on InP/In0.53Ga0.47As QWIPs, and 640₉512 FPA, which to our knowledge, is the largest format InP/InGaAs QWIP FPA reported. InP/InGaAs QWIPs yield quantum efficiency-gain product as high as 0.46 under moderate bias. At 70


Long wavelength mercury cadmium telluride photodiodes and focal plane arrays
Aşıcı, Burak; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2005)
This thesis reports the fabrication and characterization of long wavelength infrared mercury cadmium telluride (Hg1-xCdxTe) photodiodes and 128x128 focal plane arrays grown on lattice matched cadmium zinc telluride (Cd1-yZnyTe) substrates by metal organic vapor phase epitaxy (MOVPE). The dark current modeling of 33x33 mm2 Hg1-xCdxTe photodiodes has shown the dark current is dominated by trap assisted tunneling under small reverse bias voltages typically used to bias these detectors. The dominant dark curren...
Ensemble monte carlo simulation of quantum well infrared photodetectors, and inp based long wavelength quantum well infrared photodetectors for thermal imaging
Cellek, Oray Orkun; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2006)
Quantum well infrared photodetectors (QWIP) utilize quantum wells of large bandgap materials to detect infrared radiation. When compared to conventional low bandgap LWIR photodetectors, the QWIP technology offers largest format thermal imagers with much better uniformity. The theoretical part of this study includes the development of a QWIP ensemble Monte Carlo simulator. Capture paths of electrons to quantum wells are simulated in detail. For standard AlGaAs/GaAs QWIPs, at medium and high E-fields L valley...
Electrothermal Analysis of the Field-Plated AIGaN/GaN HEMTs with SiO2 Passivation
Kara, Dogacan; AKGÜN, FATMA NAZLI DÖNMEZER (2017-09-01)
AlGaN/GaN high electron mobility transistors (HEMTs) are widely used in high frequency and power applications of the space and military industries due to their high RF power densities. When operated in full capacity, reliability of GaN HEMTs drop significantly due to device degradation, electron collapse phenomena, and concentrated heating effects. Although significant research has been done to investigate the effects of passivation, field-plates on the device degradation and the electron collapse separatel...
Large format dual-band quantum well infrared photodetector focal plane arrays
Arslan, Yetkin; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2009)
Quantum Well Infrared Photodetectors (QWIPs) are strong competitors to other detector technologies for future third generation thermal imagers. QWIPs have inherent advantages of mature III-V material system and well settled fabrication technology, as well as narrow band photo-response which is an important property facilitating the development of dual-band imagers with low crosstalk. This thesis focuses on the development of long/mid wavelength dual band QWIP focal plane arrays (FPAs) based on the AlGaAs/Ga...
Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis
Bayram, Barış (2015-08-01)
In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m x m configuration (m = 1 - 5) is investigated using finite element analysis (FEA) of a commercially available software package (ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation imped...
Citation Formats
S. Özer, “InSb AND InAsSb infrared photodiodes on alternative substrates and InP/InGaAs quantum well infrared photodetectors : pixel and focal plane array performance,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.