Large format dual-band quantum well infrared photodetector focal plane arrays

Download
2009
Arslan, Yetkin
Quantum Well Infrared Photodetectors (QWIPs) are strong competitors to other detector technologies for future third generation thermal imagers. QWIPs have inherent advantages of mature III-V material system and well settled fabrication technology, as well as narrow band photo-response which is an important property facilitating the development of dual-band imagers with low crosstalk. This thesis focuses on the development of long/mid wavelength dual band QWIP focal plane arrays (FPAs) based on the AlGaAs/GaAs material system. Apart from traditional single band QWIPs, the dual-band operation is achieved by proper design of a bias tunable quantum well structure which has two responsivity peaks at 4.8 and 8.4 um for midwave infrared (MWIR) and longwave infrared (LWIR) atmospheric windows, respectively. The fabricated large format (640x512) FPA has MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 um, and it provides noise equivalent temperature differences (NETDs) of ~ 20 and 32 mK (f/1.5 at 65 K) in these bands, respectively. The employed bias tuning approach for the dual-band operation requires the same fabrication steps established for single band QWIP FPAs, which is an important advantage of the selected method resulting in high-yield, high-uniformity and low-cost. Results are encouraging for fabrication of low cost, large format, and high performance dual band FPAs, making QWIP a stronger candidate in the competition for third generation thermal imagers.

Suggestions

Large Format Dual Band QWIP Focal Plane Arrays for Third Generation Thermal Imagers
Beşikci, Cengiz; Eker, S. U. (2009-10-08)
This talk covers the recent developments in quantum structured infrared photodetector technology, as well as the realization of large format/low cost dual band QWIP focal plane arrays for third generation thermal imagers.
Dual and single color mid-wavelength infrared quantum well photodetectors
Kaldırım, Melih; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2008)
Quantum Well Infrared Photodetector (QWIP) technology is promising for the development of large format low cost single and dual/multi color infrared sensor arrays. Thanks to the mature III-V semiconductor technology, QWIP focal plane arrays (FPAs) provide high uniformity and excellent noise equivalent temperature difference (NETD) in both long wavelength infrared (LWIR 8-12 m) and mid wavelength infrared (MWIR 3-5 m) bands. This thesis work focuses on the development of large format single and dual color MW...
Ensemble Monte Carlo simulation of quantum well infrared photodetectors
Memiş, Sema; Tomak, Mehmet; Department of Physics (2006)
Quantum well infrared photodetectors (QWIPs) have recently emerged as a potential alternative to the conventional detectors utilizing low bandgap semiconductors for infrared applications. There has been a considerable amount of experimental and theoretical work towards a better understanding of QWIP operation, whereas there is a lack of knowledge on the underlying physics. This work provides a better understanding of QWIP operation and underlying physics through particle simulations using the ensemble Monte...
High performance readout and control electronics for mems gyroscopes
Şahin, Emre; Akın, Tayfun; Department of Electrical and Electronics Engineering (2009)
This thesis reports the development of various high performance readout and control electronics for implementing angular rate sensing systems using MEMS gyroscopes developed at METU. First, three systems with open loop sensing mechanisms are implemented, where each system has a different drive-mode automatic gain controlled (AGC) self-oscillation loop approach, including (i) square wave driving signal with DC off-set named as OLS_SquD, (ii) sinusoidal driving signal with DC off-set named as OLS_SineD, and i...
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
Citation Formats
Y. Arslan, “Large format dual-band quantum well infrared photodetector focal plane arrays,” M.S. - Master of Science, Middle East Technical University, 2009.