Numerical and experimantal analysis of flapping motion in hover, application to micro air vehicles

Download
2005
Kurtuluş, Dilek Funda
The aerodynamics phenomena of flapping motion in hover are considered in view of the future Micro Air Vehicle applications. The aim of this work is to characterize the vortex dynamics generated by the wing in motion using direct numerical simulation and experimental analysis then to propose a simplified analytical model for prediction of the forces in order to optimize the parameters of the motion leading to maximum force. A great number of cases are investigated corresponding to different angles of attack, location of start of change of incidence, location of start of change of velocity, axis of rotation, and Re number. The airfoil used is symmetrical. The flow is assumed to be incompressible and laminar with the Reynolds numbers between 500 and 2000. The experimental results obtained by the laser sheet visualization and the Particle Image Velocimetry (PIV) techniques are used in parallel with the direct numerical simulation results for the phenomenological analysis of the flow. The model developed for the aerodynamic forces is an indicial method based on the use of the Duhamel Integral and the results obtained by this model are compared with the ones of the numerical simulations.

Suggestions

NUMERICAL AND EXPERIMENTAL ANALYSIS OF FLAPPING MOTION IN HOVER. APPLICATION TO MICRO AIR VEHICLES.
Kurtuluş, Dilek Funda (2005-06-01)
The aerodynamics phenomena of flapping motion in hover are considered in view of the future Micro Air Vehicle applications. The aim of this work is to characterize the vortex dynamics generated by the wing in motion using direct numerical simulation and experimental analysis then to propose a simplified analytical model for prediction of the forces in order to optimize the parameters of the motion leading to maximum force. A great number of cases are investigated corresponding to different angles of a...
Conceptual internal design and computational fluid dynamics analysis of a supersonic inlet
Alemdaroğlu, Mine; Özyörük, Yusuf; Department of Aerospace Engineering (2005)
In this thesis, the conceptual internal design of the air inlet of a supersonic, high altitude, solid propellant ramjet cruise missile is performed. Inviscid, compressible CFD analysis of the designed inlet is made in order to obtain qualitative and quantitative performance characteristics of the inlet at different operating conditions. The conceptual design of the inlet is realized by using analytical relations and equations, correlations derived from numerous available past experimental data and state-of-...
Nonlinear modeling and flight control system design of an unmanned aerial vehicle
Karakaş, Deniz; Balkan, Raif Tuna; Department of Mechanical Engineering (2007)
The nonlinear simulation model of an unmanned aerial vehicle (UAV) in MATLAB®/Simulink® environment is developed by taking into consideration all the possible major system components such as actuators, gravity, engine, atmosphere, wind-turbulence models, as well as the aerodynamics components in the 6 DOF equations of motion. Trim and linearization of the developed nonlinear model are accomplished and various related analyses are carried out. The model is validated by comparing with a similar UAV data in te...
Navigation algorithms and autopilot application for an unmanned airvehicle
Kahraman, Eren; Alemdaroğlu, Hüseyin Nafiz; Nalbantoğlu, Volkan; Department of Aerospace Engineering (2010)
This study describes the design and implementation of the altitude and heading autopilot algorithms for a fixed wing unmanned air vehicle and navigation algorithm for attitude and heading reference outputs. Algorithm development is based on the nonlinear mathematical model of Middle East Technical University Tactical Unmanned Air Vehicle (METU TUAV), which is linearized at a selected trim condition. A comparison of nonlinear and linear mathematical models is also done. Based on the linear mathematical model...
Robust controller design for a fixed wing uav
Prach, Anna; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2009)
This study describes the design and implementation of the pitch and roll autopilots for a fixed wing unmanned vehicle. A Tactical Unmanned Aerial Vehicle (TUAV), which is designed at the Middle East Technical University (METU), is used as a platform. This work combines development of the classical and robust controllers, which are used for the pitch and roll autopilots. One of the important steps in the thesis is development of the non-linear dynamic model of the UAV, which is developed in MATLAB/Simulink e...
Citation Formats
D. F. Kurtuluş, “Numerical and experimantal analysis of flapping motion in hover, application to micro air vehicles,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.