Camera controlled pick and placeapplication with Puma 760 arm

Durusu, Deniz
This thesis analyzes the kinematical structure of Puma 760 arm and introduces the implementation of image based pick and place application by taking care of the obstacles in the environment. Forward and inverse kinematical solutions of PUMA 760 are carried out. A control software has been developed to calculate both the forward and inverse kinematics solution of this manipulator. The control program enables user to perform both offline programming and real time realization by transmitting the VAL commands (Variable Assembly Language) to the control computer. Using the proposed inverse kinematics solutions, an interactive application is generated on PUMA 760 arm. The picture of the workspace is taken using a fixed camera attached above the robot workspace. The captured image is then processed to find the position and the distribution of all objects in the workspace. The target is differentiated from the obstacles by analyzing some specific properties of all objects, i.e. roundness. After determining the configuration of the workspace, a clustering based search algorithm is executed to find a path to pick the target object and places it to the desired place. The trajectory points in pixel coordinates, are mapped into the robot workspace coordinates by using the camera calibration matrix obtained in the calibration procedure of the robot arm with respect to the attached camera. The required joint angles, to get the end effector of the robot arm to the desired location, are calculated using the Jacobian type inverse kinematics algorithm. The VAL commands are generated and sent to the control computer of PUMA 760 to pick the object and places it to a user defined location.
Citation Formats
D. Durusu, “Camera controlled pick and placeapplication with Puma 760 arm,” M.S. - Master of Science, Middle East Technical University, 2005.