Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ISAR imaging and motion compensation
Download
index.pdf
Date
2006
Author
Küçükkılıç, Talip
Metadata
Show full item record
Item Usage Stats
573
views
126
downloads
Cite This
In Inverse Synthetic Aperture Radar (ISAR) systems the motion of the target can be classified in two main categories: Translational Motion and Rotational Motion. A small degree of rotational motion is required in order to generate the synthetic aperture of the ISAR systems. On the other hand, the remaining part of the target’s motion, that is any degree of translational motion and the large degree of rotational motion, degrades ISAR image quality. Motion compensation techniques focus on eliminating the effect of the targets’ motion on the ISAR images. In this thesis, ISAR image generation is discussed using both Conventional Fourier Based and Time-Frequency Based techniques. Standard translational motion compensation steps, Range and Doppler Tracking, are examined. Cross-correlation method and Dominant Scatterer Algorithm are employed for Range and Doppler tracking purposes, respectively. Finally, Time-Frequency based motion compensation is studied and compared with the conventional techniques. All of the motion compensation steps are examined using the simulated data. Stepped frequency waveforms are used in order to generate the required data of the simulations. Not only successful results, but also worst case examinations and lack of algorithms are also discussed with the examples.
Subject Keywords
Electronics.
URI
http://etd.lib.metu.edu.tr/upload/12608102/index.pdf
https://hdl.handle.net/11511/16490
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a pc numerical system for high voltage sphere gap control
Kasap, Onur; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2005)
In this thesis, a high precision motion and position control system has been developed and applied to a high voltage sphere gap control and measurement system. The system is able to support up to 3-axes position and motion control. The control system includes a microcontroller card, three DC servo motor driver cards and a data storage unit. To provide communication between computer and motion control system, the Universal Serial Bus (USB) port is used. The microcontroller card is equipped with an USB interf...
MEMS accelerometers and gyroscopes for inertial measurement units
Erişmiş, Mehmet Akif; Akın, Tayfun; Department of Electrical and Electronics Engineering (2004)
This thesis reports the development of micromachined accelerometers and gyroscopes that can be used for micromachined inertial measurement units (IMUs). Micromachined IMUs started to appear in the market in the past decade as low cost, moderate performance alternative in many inertial applications including military, industrial, medical, and consumer applications. In the framework of this thesis, a number of accelerometers and gyroscopes have been developed in three different fabrication processes, and the ...
Evaluation of multi target tracking algorithms in the presence of clutter
Güner, Onur; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2005)
This thesis describes the theoretical bases, implementation and testing of a multi target tracking approach in radar applications. The main concern in this thesis is the evaluation of the performance of tracking algorithms in the presence of false alarms due to clutter. Multi target tracking algorithms are composed of three main parts: track initiation, data association and estimation. Two methods are proposed for track initiation in this work. First one is the track score function followed by a threshold c...
Finite element modeling of electromagnetic radiation
Özgün, Özlem; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2007)
The Finite Element Method (FEM) is a powerful numerical method to solve wave propagation problems for open-region electromagnetic radiation/scattering problems involving objects with arbitrary geometry and constitutive parameters. In high-frequency applications, the FEM requires an electrically large computational domain, implying a large number of unknowns, such that the numerical solution of the problem is not feasible even on state-of-the-art computers. An appealing way to solve a large FEM problem is to...
High performance readout electronics for uncooled infrared detector arrays
Yıldırım, Ömer Özgür; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Küçükkılıç, “ISAR imaging and motion compensation,” M.S. - Master of Science, Middle East Technical University, 2006.