Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Novel donor-acceptor type polymers towards excellent neutral state green polymeric materials for realization of RGB based electrochromic device applications
Download
index.pdf
Date
2007
Author
Günbaş, Görkem Emrullah
Metadata
Show full item record
Item Usage Stats
239
views
94
downloads
Cite This
Polymers having one of the three complementary colors (red, green, and blue) in the reduced state and high transmissivity in the oxidized state are key materials towards use in electrochromic devices and displays. Although many neutral state red and blue polymers were reported up to date, neutral state green polymeric materials appear to be limited. For potential application of electrochromic materials in display technologies, one should have to create the entire color spectrum and this can be only achieved by having materials with additive or subtractive primary colors in their neutral states. To obtain a green color there should be at least two simultaneous absorption bands. Although the neutral state color is of great importance, the transmittance in the oxidized state is crucial too. The materials having one of the three primary colors should also possess highly transmissive oxidized states in order to be used in commercial electrochromic device applications. Donor-acceptor molecules lead to lower band gap due to resonances that enable a stronger double bond character between the donor and acceptor units. The materials with low band-gaps produce cathodically coloring polymers due to the lower energy transition in the doped state. Moreover, donor-acceptor type materials commonly show two absorption maxima. Since donor-acceptor approach seems to be the key to the complex nature of producing these materials, novel donor-acceptor type polymers were synthesized, and electrochromic properties were investigated in detail.Additionally a solution-processable donor-acceptor type polymer was realized using method of introducing alkyl side chains in the polymer structures.
Subject Keywords
Polymers.
URI
http://etd.lib.metu.edu.tr/upload/3/12609002/index.pdf
https://hdl.handle.net/11511/17362
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Nanocomposites based on blends of polyethylene
Işık, Fatma; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride; as organoclay Cloisite? 15A, Cloisite? 25A and Cloisite? 30B were used. All samples were prepared by a co-rotating t...
Impact modified polyamide-organoclay nanocomposites
Işık, Işıl; Yılmazer, Ülkü; Department of Chemical Engineering (2007)
The effects of melt state compounding and addition order of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH), ethylene-glycidyl methacrylate (E-GMA), ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A and 30B) on morphology, thermal, mechanical and dynamic mechanical properties of polyamide-6 are investigated. XRD patterns show that the interlayer spacing for Cloisite® 15A remained unchanged; however it increased for the organoclays ...
Preparation and characterization of thermally stable organoclays and their use in polymer based nanocomposites
Abdallah, Wissam; Yılmazer, Ülkü; Department of Chemical Engineering (2010)
The present study was aimed at exploring the purification and modification of montmorillonite rich Turkish bentonites by organic salts and their subsequent effects on the morphology (X-diffractometry, transmission electron microscopy, scanning electron microscopy), melt flow index, mechanical (Tensile, Impact) and especially thermal stability (thermal gravimetric analysis, differential scanning calorimetry) properties of polymer/organoclay nanocomposites with and without an elastomeric compatibilizer. The b...
Flame retardancy of polyamide compounds and micro/nano composites
Gündüz, Hüseyin Özgür; Kaynak, Cevdet; Department of Polymer Science and Technology (2009)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogra...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. E. Günbaş, “Novel donor-acceptor type polymers towards excellent neutral state green polymeric materials for realization of RGB based electrochromic device applications,” M.S. - Master of Science, Middle East Technical University, 2007.