Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
2-acrylamido-2-methyl-1-propanesulfonic acid -methacrylic acid copolymer and its polyethylene glycol methyl ether derivatives as superplasticizers in concrete
Download
index.pdf
Date
2008
Author
Tuzcu, Gözde
Metadata
Show full item record
Item Usage Stats
268
views
98
downloads
Cite This
Polymers in concrete have received considerable attention over the past 30 years. Superplasticizers are one of the admixtures which have polymeric structure. In this study, polycarboxylate type slump-releasing dispersant, which is a copolymer of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and methacrylic acid (MAA), was synthesized in different feed compositions. The synthesis procedure of this copolymer was retrieved from literature. The derivatives of this water-soluble copolymer (AMPS-MAA) were synthesized by a macromonomer which was synthesized by the esterification of poly(ethylene glycol) methyl ether (PEG) with MAA (PEGMA) and then copolymerizing this macromonomer with AMPS monomer, the resulting copolymer is AMPS-PEGMA. In order to study the methyl group effect on fluidity, the other type of macromonomer (PEGA), composed of PEG and acrylic acid (AA), was synthesized and copolymerized with AMPS monomer, giving AMPS-PEGA. The structures of synthesized polymers were verified by NMR and FT-IR analysis. The slump-releasing effect of the synthesized copolymers was studied in terms of reaction pH, composition, molecular weight, amount of PEG side chains, and molecular weight of PEG side chains. The AMPS-MAA copolymer with 40% AMPS content was the most effective in promoting the fluidity of cement pastes. In scope of reaction pH, the AMPS-MAA copolymer, synthesized at a pH of 11, gave the most effective result on fluidity of the cement pastes. In copolymers of PEG acrylate macromonomers and AMPS monomers, copolymers with 5% PEG acrylate content showed the highest fluidity both in copolymers of PEGA and PEGMA. In copolymers with PEG side chains, the 15% AMPS-PEGA copolymer synthesized at pH of 6 gave the most effective result on fluidity of cement pastes. In the study of mechanical properties of the mortar samples prepared by the copolymers selected, AMPS-PEGA copolymer with 25% PEG content showed the highest flexural strength, and AMPS-MAA copolymer with 60% AMPS content and a reaction pH of 11 gave the highest compressive strength. In this study, zeta potential measurements were also performed to analyze the fluidity behavior of the copolymers.
Subject Keywords
Polymers.
URI
http://etd.lib.metu.edu.tr/upload/3/12609380/index.pdf
https://hdl.handle.net/11511/17588
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effects of chain extension and branching on the properties of recycled poly(ethylene terephtkalate)-organoclay nanocomposites
Keyfoğlu, Ali Emrah; Yılmazer, Ülkü; Department of Chemical Engineering (2004)
In this study, the effects of chain extension and branching on the properties of nanocomposites produced from recycled poly(ethylene terephthalate) and organically modified clay were investigated. As the chain extension/branching agent, maleic anhydride (MA) and pyromellitic dianhydride (PMDA) were used. The nanocomposites were prepared by twin-screw extrusion, followed by injection molding. Recycled poly(ethylene terephthalate), was mixed with 2, 3 and 4 weight % of organically modified montmorillonite. Du...
Nanocomposites based on recycled poly(ethylene terepthalate)
Tolga, Aslı; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study, the effects of glycol type, organoclay type and concentration on the final properties of nanocomposites based on recycled poly(ethylene terephthalate) was investigated. For this purpose, first recycled PET was glycolysed and after that unsaturated polyester-montmorillonite nanocomposites were synthesized by using three different types of glycols (i.e. ethylene glycol (EG), propylene glycol (PG) and diethylene glycol (DEG)). As the first step, all the compositions were prepared by Cloisite 30B...
Electrical and mechanical properties of carbon black reinforced high density polyethylene/low density polyethylene composites
Altıntaş, Bekir; Küçükyavuz, Zuhal; Department of Polymer Science and Technology (2004)
In this study, the High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) blends prepared by Plasticorder Brabender were strengthened by adding Carbon Black (CB). Blends were prepared at 190 °C. Amounts of LDPE were changed to 30, 40, 50 and 60 percent by the volume and the percent amounts of CB were changed to 5, 10,15, 20 and 30 according to the total volume. Thermal and morphological properties were investigated by using Differential Scanning Calorimeter (DSC), Scanning Electron Microscope ...
Flame retardancy of polyamide compounds and micro/nano composites
Gündüz, Hüseyin Özgür; Kaynak, Cevdet; Department of Polymer Science and Technology (2009)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogra...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Tuzcu, “2-acrylamido-2-methyl-1-propanesulfonic acid -methacrylic acid copolymer and its polyethylene glycol methyl ether derivatives as superplasticizers in concrete,” M.S. - Master of Science, Middle East Technical University, 2008.