Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Theoretical investigation and design for x-ray lasers and their lithographic application
Download
index.pdf
Date
2008
Author
Demir, Pınar
Metadata
Show full item record
Item Usage Stats
242
views
79
downloads
Cite This
Grazing incidence pumping (GRIP) is a scheme to produce x-ray lasers and extreme ultraviolet lithography is a means of lithographic production which requires soft x-rays with a bandwidth of 2% centred at 13,5 nm. In this work firstly a grazing incidence pumping of Ni-like Mo and Ne-like Ti x-ray laser media were simulated by using EHYBRID and a post-processor code coupled to it. The required atomic data were obtained from the Cowan code. Besides, the timing issue needed for amplification purpose in a Ti:Sapphire laser system has been described theoretically. Afterwards, in order to produce soft x-ray lasers for extreme ultraviolet lithographic applications, emission of soft x-rays in the 2% bandwidth centred at 13.5 nm emitted from Sn XII and Sn XIII ions were simulated by using the EHYBRID code for a laser operating at 1064 nm with 1 J of pulse energy and 6 ns of pulse duration. The intensity range that has been investigated is between 1-5 x 1012 W/cm2. Ion fractions of tin ions and line intensities corresponding to different electron temperatures were calculated by using the collisional radiative code NeF.
Subject Keywords
Physics.
URI
http://etd.lib.metu.edu.tr/upload/12609743/index.pdf
https://hdl.handle.net/11511/17794
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Imaging of metal surfaces using confocal laser scanning microscopy
Yıldız, Bilge Can; Altan, Hakan; Department of Physics (2011)
Optical imaging techniques have improved much over the last fifty years since the invention of the laser. With a high brightness source many imaging applications which were once inaccessible to researchers have now become a reality. Among these techniques, the most beneficial one is the use of lasers for both wide-field and confocal imaging systems. The aim of this study was to design a laser imaging system based on the concept of laser scanning confocal microscopy. Specifically the optical system was based...
Structural, electrical and optical characterization of ge-implanted gase single crystal grown by Bridgman Method
Karaağaç, Hazbullah; Akınoğlu, Bülent Gültekin; Department of Physics (2005)
In this work, structural, electrical and optical characterization of as-grown, Ge-implanted, and annealed GaSe single crystals grown by using 3-zone vertical Bridgman-Stockbarger system, have been studied by carrying out X-ray Diffraction (XRD), electrical conductivity, Hall effect, photoconductivity, and spectral transmission measurements. The temperature dependent electrical conductivity of these samples have been measured between 100 and 400 K. As a result, it was observed that upon implanting GaSe with ...
Optical properties of silicon based amorphous thin films
Akaoğlu, Barış; Katırcıoğlu, Bayram; Department of Physics (2004)
Silicon based hydrogenated amorphous semiconducting (intrinsic and n/p doped a-Si:H and a-Si1-xCx:H) thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) system. In order to analyze the optical response of these amorphous films, intrinsic optical absorption mechanisms have resumed and spectral variations of absorption coefficient ?(E) are derived. The exponential variation of absorption coefficient for energies below the band edge is discussed in the frame of randomly distribu...
Development of atomic force microscopy system and kelvin probe microscopy system for use in semiconductor nanocrystal characterization
Bostancı, Umut; Turan, Raşit; Department of Physics (2007)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different g...
Development of software for calculations of the reflectance, transmittance and absorptance of multilayered thin films
Şimşek, Yusuf; Esendemir, Akif; Department of Physics (2008)
The aim of this study is to develop a software which calculates reflection, transmission and absorption of multilayered thin films by using complex indices of refraction, as a function of both wavelength and thickness. For these calculations matrix methods will be considered and this software is programmed with the matrix method. Outputs of the program will be compared with the theoretical and experimental results studied in the scientific papers.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Demir, “Theoretical investigation and design for x-ray lasers and their lithographic application,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.