Light cone qcd sum rules and meson physics

Download
2008
Kanık, İnanç
Grazing incidence pumping (GRIP) is a scheme to produce x-ray lasers and extreme ultraviolet lithography is a means of lithographic production which requires soft x-rays with a bandwidth of 2% centred at 13,5 nm. In this work firstly a grazing incidence pumping of Ni-like Mo and Ne-like Ti x-ray laser media were simulated by using EHYBRID and a post-processor code coupled to it. The required atomic data were obtained from the Cowan code. Besides, the timing issue needed for amplification purpose in a Ti:Sapphire laser system has been described theoretically. Afterwards, in order to produce soft x-ray lasers for extreme ultraviolet lithographic applications, emission of soft x-rays in the 2% bandwidth centred at 13.5 nm emitted from Sn XII and Sn XIII ions were simulated by using the EHYBRID code for a laser operating at 1064 nm with 1 J of pulse energy and 6 ns of pulse duration. The intensity range that has been investigated is between 1-5 x 1012 W/cm2. Ion fractions of tin ions and line intensities corresponding to different electron temperatures were calculated by using the collisional radiative code NeF.

Suggestions

Theoretical investigation and design for x-ray lasers and their lithographic application
Demir, Pınar; Bilikmen, Kadri Sinan; Department of Physics (2008)
Grazing incidence pumping (GRIP) is a scheme to produce x-ray lasers and extreme ultraviolet lithography is a means of lithographic production which requires soft x-rays with a bandwidth of 2% centred at 13,5 nm. In this work firstly a grazing incidence pumping of Ni-like Mo and Ne-like Ti x-ray laser media were simulated by using EHYBRID and a post-processor code coupled to it. The required atomic data were obtained from the Cowan code. Besides, the timing issue needed for amplification purpose in a Ti:Sap...
The controlled drift detector as an x-ray imaging device for diffraction enhanced imaging
Özkan, Çiğdem; Serin, Meltem; Department of Physics (2009)
Diffraction Enhanced Imaging (DEI) is an X-ray imaging technique providing specific information about the molecular structure of a tissue by means of coherently scattered photons. A Controlled Drift Detector (CDD) is a novel 2D silicon imager developed to be used in X-ray imaging techniques. In this work a final (complete and detailed) analysis of DEI data taken with the CDD in the ELETTRA synchrotron light source facility in Trieste (Italy) in 2005, is presented and the applicability of both this new techn...
Analysis of preformed plasma condition of Ni-like Mo X-ray laser media
İnce, Sevi; Bilikmen, Kadri Sinan; Department of Physics (2006)
The aim of this work is to produce X-ray laser source from a plasma produced by focusing a pulsed laser beam on a solid target. Preformed Molybdenum plasma is created by using Nd:YAG laser pulses with a pulse duration 6 ns and pulse intensity 5.09x1011 W/cm2. Detailed simulations of Ni-like Mo X-ray laser media are undertaken using the EHYBRID code which is a hydrodynamic code. X-ray resonance lines between 25 Å and 40 Å emitted from the molybdenum plasma have been obtained and analysed. EHYBRID code also g...
Magnetohydrodynamic Flow Imaging Using Spin-Echo Pulse Sequence
Eroğlu, Hasan Hüseyin; SADIGHI, MEHDI; Eyüboğlu, Behçet Murat (2019-04-24)
In this study, magnetohydrodynamic (MHD) flow of conductive liquids due to injection of electrical current during magnetic resonance imaging (MRI) is investigated. A spin-echo based MRI pulse sequence is proposed to image the MHD flow. Magnetic resonance (MR) phase effects of the MHD flow is related to the MRI pulse parameters and injected current. Average velocity distributions of the MHD flow are reconstructed using the MR phase images. The method is validated by numerical simulations. The reconstruction ...
The first optical light from the supernova remnant G182.4+4.3 located in the Galactic anticentre region
Sezer, A.; GÖK, FATMA; Aktekin, E. (2012-12-01)
We report the discovery of optical filamentary and diffuse emission from G182.4+4.3 using the 1.5-m Russian-Turkish telescope. We present the optical CCD images obtained with the H alpha filter, revealing the presence of mainly filamentary structure to the north-west and filamentary and diffuse structure in the centre, south and north regions of the remnant. The bright optical filaments located in the north-west and south regions are well correlated with the prominent radio shell of the remnant, strongly su...
Citation Formats
İ. Kanık, “Light cone qcd sum rules and meson physics,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.