Design and implementation of a voltage source converter based hybrid active power filter

Download
2009
Uçak, Onur
This research work is devoted to the analysis, design and implementation of a shunt connected Hybrid Active Power Filter by the use of a lower rated voltage source PWM converter, and a series connected LC passive filter. In recent years, voltage and current harmonics have become a serious problem both in transmission and distribution systems, due to the widespread usage of non-linear loads such as diode/thyristor rectifiers, electric arc furnaces and motor drives. In order to obtain a better performance than those of the conventional passive filter solutions, active power filters (APF) have been worked on and developed. Among various configurations listed in the literature, conventional shunt connected voltage source active power filter is widely used in industrial applications. Unfortunately, for large power applications, the losses and the rating of the APF increase considerably. As a result, various hybrid filter topologies have been developed which combine the advantages of both passive and active filters. In this thesis, a shunt connected hybrid active power filter is developed by combining a 4.7 kVA voltage source converter and a 30kVAR 7th harmonic passive filter. The developed system has been implemented to eliminate the most dominant 5th, 7th and 11th current harmonic components existing at 400V low voltage bus of TUBITAK SPACE Technologies Institute. The theoretical and experimental results have shown that the DC link voltage of the converter and the rating of APF are minimized while keeping the filtering performance satisfactory.

Suggestions

Design and implementation of advanced pulse width modulation techniques and passive filters for voltage source inverter driven three-phase ac motors
Nebi, Onur Çetin; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2010)
Advanced pulse width modulation (PWM) techniques such as space vector PWM, active zero state PWM, discontinuous PWM, and near state PWM methods are used in three-phase AC motor drives for the purpose of obtaining low PWM current ripple, wide voltage linearity range, and reduced common mode voltage (CMV). In some applications, a filter is inserted between the inverter and the motor for the purpose of reducing the stresses in the motor. The motor current PWM ripple components, terminal voltage overshoots, sha...
Design and implementation of a current source converter based statcom for reactive power compensation
Bilgin, Hazım Faruk; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
This research work is devoted to the analysis, design and development of the first medium power Current-Source Converter (CSC) based distribution-type Static Synchronous Compensator (D-STATCOM) with simplest converter topology and coupling transformer connection. The developed CSC-D-STATCOM includes a +/-750kVAr full-bridge CSC employing Selective Harmonic Elimination Method (SHEM), a 250kVAr low-pass input filter at 1kV voltage level, and a Δ/Y connected coupling transformer for connection to medium-voltag...
Optimizing transient and filtering performance of a C-type 2nd harmonic power filter by the use of solid-state switches
Gerçek, Cem Özgür; Ertaş, Arif; Department of Electrical and Electronics Engineering (2007)
In this research work, the performance of a C-type, 2nd harmonic power filter is optimized by the use of a thyristor switched damping resistor. In the design of conventional C-type, 2nd harmonic filters; the resistance of permanently connected damping resistor is to be optimized for minimization of voltage stresses on filter elements arising from switchings in transient state and for maximization of filtering effectiveness in the steady-state. Transformer inrush current during energization of power transfor...
Series active filter design, control, and implementation with a novel load voltage harmonic extraction method
Şentürk, Osman Selçuk; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2007)
Series Active Filters (SAF) are designed for harmonic isolation and load voltage regulation of single-phase and three-phase voltage harmonic source type nonlinear loads. The novel Absolute Value Method (AVM) for load voltage harmonic extraction is proposed and applied in the control algorithm of SAF. The SAF compensated systems are represented by simplified linear models such that SAF controller gains can be easily determined. Harmonic isolation and load voltage regulation performances of 2.5 kW single-phas...
Design and implementation of a voltage source converter based statcom for reactive power compensation and harmonic filtering
Çetin, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-co...
Citation Formats
O. Uçak, “Design and implementation of a voltage source converter based hybrid active power filter,” M.S. - Master of Science, Middle East Technical University, 2009.