Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A parallel algorithm for flight route planning on gpu using cuda
Download
index.pdf
Date
2010
Author
Sancı, Seçkin
Metadata
Show full item record
Item Usage Stats
189
views
74
downloads
Cite This
Aerial surveillance missions require a geographical region known as the area of interest to be inspected. The route that the aerial reconnaissance vehicle will follow is known as the flight route. Flight route planning operation has to be done before the actual mission is executed. A flight route may consist of hundreds of pre-defined geographical positions called waypoints. The optimal flight route planning manages to find a tour passing through all of the waypoints by covering the minimum possible distance. Due to the combinatorial nature of the problem it is impractical to devise a solution using brute force approaches. This study presents a strategy to find a cost effective and near-optimal solution to the flight route planning problem. The proposed approach is implemented on GPU using CUDA.
Subject Keywords
Computer enginnering.
URI
http://etd.lib.metu.edu.tr/upload/12611792/index.pdf
https://hdl.handle.net/11511/19510
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A Parallel Algorithm for UAV Flight Route Planning on GPU
Sanci, Seckin; İşler, Veysi (Springer Science and Business Media LLC, 2011-12-01)
Aerial surveillance missions require a geographical region known as the area of interest to be inspected. The route that the aerial reconnaissance vehicle will follow is known as the flight route. Flight route planning operation has to be done before the actual mission is executed. A flight route may consist of hundreds of pre-defined geographical positions called waypoints. The optimal flight route planning manages to find a tour passing through all of the waypoints by covering the minimum possible distanc...
A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks
Lilien, Leszek T.; BEN OTHMANE, Lotfi; Angın, Pelin; DECARLO, Andrew; Salih, Raed M.; BHARGAVA, Bharat (Elsevier BV, 2014-02-01)
Specialized ad hoc networks of unmanned aerial vehicles (UAVs) have been playing increasingly important roles in applications for homeland defense and security. Common resource virtualization techniques are mainly designed for stable networks; they fall short in providing optimal performance in more dynamic networks such as mobile ad hoc networks (MANETs)-due to their highly dynamic and unstable nature. We propose application of Opportunistic Resource Utilization Networks (Oppnets), a novel type of MANETs, ...
Formation preserving navigation of agent teams in 3-d terrains
Bayrak, Ali Galip; Polat, Faruk; Department of Computer Engineering (2008)
Navigation of a group of autonomous agents that are needed to maintain a formation is a challenging task which has not been studied much in especially 3-D terrains. This thesis presents a novel approach to collision free path finding of multiple agents preserving a predefined formation in a 3-D terrain. The proposed method could be used in many areas like navigation of semi-automated forces (SAF) at unit level in military simulations and non player characters (NPC) in computer games. The proposed path findi...
Dynamic model integration and 3d graphical interface for a virtual ship
Çalargün, Canku Alp; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2008)
This thesis addresses the improvement of a physically based modeling simulator Naval Surface Tactical Maneuvering Simulation System (NSTMSS), that combines different simulators in a distributed environment by the help of High Level Architecture (HLA), to be used in naval tactical training systems. The objective is to upgrade a computer simulation program in which physical models are improved in order to achieve a more realistic movement of a ship in a virtual environment. The simulator will also be able to ...
Solving the area coverage problem with UAVs: A vehicle routing with time windows variation
Semiz, Fatih; Polat, Faruk (Elsevier BV, 2020-4)
In real life, providing security for a set of large areas by covering the area with Unmanned Aerial Vehicles (UAVs) is a difficult problem that consist of multiple objectives. These difficulties are even greater if the area coverage must continue throughout a specific time window. We address this by considering a Vehicle Routing Problem with Time Windows (VRPTW) variation in which capacity of agents is one and each customer (target area) must be supplied with more than one vehicles simultaneously without v...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sancı, “A parallel algorithm for flight route planning on gpu using cuda,” M.S. - Master of Science, Middle East Technical University, 2010.