Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biopolymer based micro/nanoparticles as drug carriers for the treatment of skin diseases
Download
index.pdf
Date
2011
Author
Eke, Gözde
Metadata
Show full item record
Item Usage Stats
365
views
122
downloads
Cite This
Controlled drug delivery systems are becoming increasingly interesting with the contribution of nanotechnology. In the case of transdermal applications the greatest limitation is the highly impermeable outermost layer of the skin, the stratum corneum. One promising method of controlled transdermal drug delivery of the skin therapeutics is the use of nanoparticles as carriers. Encapsulation of the drug, as opposed to classical topical application of creams or emulsions, allows the drug to diffuse into hair follicles where drug release can occur in the deeper layers of the skin. The aim of this study was to develop micro and nano sized carriers as drug delivery systems to achieve treatment for skin conditions like psoriasis, aging or UV damage, caused by radiation or health problems. Two different types of bioactive agents, retinyl palmitate (RP) and Dead Sea Water (DSW), were used by encapsulating in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) carriers. In some tests MgCl2 was used as a substitute for DSW when quantification was needed. Bioactive agent loaded nanospheres and nanocapsules were prepared with o/w and w/o/w methods in low micron (1.9 µm), mid nano (426 nm) and nano (166 nm) sizes. Loading, encapsulation efficiency and release kinetics were studied. The encapsulation efficiency and loading values are low especially for the water soluble agents, DSW and MgCl2. It was observed that the capsules loaded with hydrophilic agents released their content in the first 24 h in aqueous media. The encapsulation efficiency and loading values for RP were higher because of the insolubility of the agent in water. In the in vitro studies carried out with L929 mouse fibroblast cells, the nano sized PHBV capsules were detected in the cytoplasm of the cells. Cell viability assay (MTT) for L929 cells showed a growth trend indicating that the particles were not cytotoxic and the values were close to the controls. Hemolytic activity was examined using human erythrocytes and micro/nanoparticles of PHBV were found to be non hemolytic. In vivo testing with BALB/c mice, nanocapsule penetration revealed that a small amount of nano sized particles penetrated the mice skin, despite the highly impermeable outer skin layer. As a result, PHBV micro/nanoparticles have a significant potential for use as topical drug delivery systems in the treatment of skin diseases.
Subject Keywords
Drug delivery systems.
URI
http://etd.lib.metu.edu.tr/upload/12613878/index.pdf
https://hdl.handle.net/11511/20899
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Peptide-based drug systems /
Parlak, Melek; Özçubukçu, Salih; Department of Chemistry (2017)
The increasing appeal of safe, cheap and effective treatments against various type of diseases has paved the way for the discovery and development of innovative peptide-based drug and drug delivery systems. The relative ease with which peptide based-materials can be synthesized and the wide range of synthetic techniques available have ensured that these materials can be tuned to adopt specific conformation or modified to contain specific functional groups. Our major focus in this thesis is developing peptid...
Bioactive agents carrying quantum dot labeled liposomes
Büyüksungur, Arda; Hasırcı, Vasıf Nejat; Padeste, Celestino; Department of Biotechnology (2013)
Among the many possible applications of nanotechnology in medicine, the use of various nanomaterials as delivery systems for pharmacologically active agents, drugs and nucleic acids (DNA, siRNA), and imaging agents is gaining increased attention. Liposomes are particularly important for these drug delivery systems because of their advantages such as their ability to carry hydrophilic and hydrophobic drugs, their being of biological origin and short life spans. Quantum Dots (QDs) are nano-scale, semiconducti...
Controlled doxorubicin delivery from photoresponsive liposomes carrying vitamin A derivatives /
Heper, Senem; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2014)
Drug delivery systems (DDS) have been an attractive approach to eliminate the drawbacks of conventional drug administration. Controlled and photoresponsive drug delivery systems have a special advantage; they deliver drugs more effectively. Liposomes are mostly preferred as drug carriers due to their ability to carry both hydrophilic and hydrophobic drugs, their being non-toxic and non-immunogenic. In this study, photoresponsive liposomes were prepared by incorporating vitamin A derivatives into the lipid b...
Synthesis and characterization of fatty acid based hyperbranched polymers for anti-cancer drug delivery
Güç, Esra; Gündüz, Ufuk; Department of Biology (2008)
Conventional methods of chemotherapy requires novel therapy systems due to serious side effects and inefficiency of drug administration. In recent years many studies are carried out to improve drug delivery systems. Polymers are one of the most important elements for drug delivery research due to their versatility. By the discovery of dendritic polymers, drug delivery studies gained a new vision. Highly branched monodisperse structure, multiple sites of attachment, well-defined size and controllable physica...
UV responsive drug delivery from suprofen incorporated liposomes
Demirbağ, Birsen; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2011)
Drug delivery systems are designed to achieve low, local doses at the target site. Delivery systems can provide the drug in a continuous manner or in response to environmental stimuli such as temperature, pH or UV. This study aimed to develop photosensitive liposomes that achieve UV-responsive release of their content. The main mechanism was to incorporate a light sensitive molecule into the liposomal bilayer then achieve destabilization of the membrane by exposure to UV. This would result in an on demand r...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Eke, “Biopolymer based micro/nanoparticles as drug carriers for the treatment of skin diseases,” M.S. - Master of Science, Middle East Technical University, 2011.