Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis and design of helicopter rotor blades for reduced vibrational level
Download
index.pdf
Date
2011
Author
Tamer, Aykut
Metadata
Show full item record
Item Usage Stats
342
views
135
downloads
Cite This
In this thesis analysis and design of helicopter rotor blades were discussed for reduced vibrational level. For this purpose an optimization procedure was developed which involves coupling of the comprehensive rotorcraft analysis tool CAMRAD JA and the gradient based optimization algorithm. The main goal was to achieve favorable blade structural dynamics characteristics that would lead to reduction in vibrational level. For this purpose blade stiffness and mass distributions were considered as the design variables. In order to avoid likely occurrences of unrealistic results, the analyses were subjected to constraints which were sensitive to the design variables. The optimization procedure was applied on two isolated rotor blades and a full helicopter with main rotor, tail rotor and fuselage by using natural frequency separation and hub load minimization respectively. While the former approach relied on the blade natural frequencies, the latter approach involved higher harmonic aerodynamic and blade motion calculations. For both approaches, the improvement in vibration characteristics and blade mass and stiffness distributions of the initial design and the design after optimization analyses were compared and discussed.
Subject Keywords
Compressors
,
Aerospace engineering.
URI
http://etd.lib.metu.edu.tr/upload/12613661/index.pdf
https://hdl.handle.net/11511/20971
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of rotor wake interactions in helicopters using 3d unsteady free vortex wake methodology
Yemenici, Öznur; Uzol, Oğuz; Department of Aerospace Engineering (2010)
This thesis focuses on developing and examining the capabilities of a new in-house aerodynamic analysis tool, AeroSIM+, and investigating rotor-rotor aerodynamic interactions for two helicopters, one behind the other in forward flight. AeroSIM+ is a 3-D unsteady vortex panel method potential flow solver based on a free vortex wake methodology. Validation of the results with the experimental data is performed using the Caradonna-Tung hovering rotor test case. AeroSIM+ code is improved for forward flight cond...
Design and analysis of a structural component of a heavy transport aircraft
Çıkrıkcı, Davut; Yaman, Yavuz; Department of Aerospace Engineering (2010)
This thesis aims to present the design and analysis of a structural component of a heavy transport aircraft. The designed component is the “coupling“ which is the interface member connecting two frames or two stringers in the fuselage assembly. The “frames”, which are the circumferential stiffeners, are joined together by the “frame couplings”. The “stringers”, which are the longitudinal stiffeners, are joined together by the “stringer couplings”. At the preliminary design phase; the structural design princ...
Flight simulation and control of a helicopter
Erçin, Gülsüm Hilal; Tekinalp, Ozan; Department of Aerospace Engineering (2008)
In this thesis the development of a nonlinear simulation model of a utility helicopter and the design of its automatic flight control system is addressed. In the first part of this thesis, the nonlinear dynamic model for a full size helicopter is developed using the MATLAB/SIMULINK environment. The main rotor (composed of inflow and flapping dynamics parts), tail rotor, fuselage, vertical stabilizer, horizontal stabilizer of the helicopter are modeled in order to obtain the total forces and moments needed f...
Mathematical model development of the anti torque system of a notar helicopter
Bakır, Hüseyin Murat; Yavrucuk, İlkay; Department of Aerospace Engineering (2008)
The anti-torque mechanism of a NOTAR helicopter is a complex system including vertical tail and pressurized tail boom which provides air ejection used for both circulation control around the boom and creating directed jet air at the end of the boom. This thesis targets the modeling of this mechanism and integrating it to a helicopter simulation model. Flight tests are performed on the MD 600N helicopter to verify the results. Finally, the simulation is compared with flight test data.
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Tamer, “Analysis and design of helicopter rotor blades for reduced vibrational level,” M.S. - Master of Science, Middle East Technical University, 2011.