Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evaluation of punching shear strength design and modelling approaches for slab-column connections
Download
index.pdf
Date
2012
Author
Zorlu, Merve
Metadata
Show full item record
Item Usage Stats
209
views
132
downloads
Cite This
Flat plate systems are constructed with slabs directly supported on columns. Since there are no beams in the system, the behavior of connections between the slabs and columns play a crucial role. Due to the sudden and brittle nature of punching shear failures, slab-column connection design must be conducted with proper safety precautions. The first part of this study aims to evaluate the safety level of different design expressions in the codes. Fir this purpose, the ability of ACI 318-11, TS-500 and Eurocode-2 to estimate punching shear strength was examined in light of experimental results compiled from previous research. Interior and exterior connections were examined in the course of the study. In the second part of the study, beam and shell models were calibrated to simulate the load-deformation response of interior slab-column connections in light of experimental results. In the final part of this thesis, a typical floor plan of a flat plate system was analyzed to investigate the possibility of a progressivefailure mechanism after punching failure takes place at a slab-column connection. Minimum post-punching capacity required to avoid progressive punching failure in a floor was estimated. It is believed that, the results of this study can be helpful in guiding engineers in understanding the safety inherent in punching shear design expressions and to take necessary precautions against progressive collapse.
Subject Keywords
Shear (Mechanics).
,
Columns, Concrete.
,
Strains and stresses.
,
Structural design.
,
Load factor design.
,
Structural analysis (Engineering).
URI
http://etd.lib.metu.edu.tr/upload/12614889/index.pdf
https://hdl.handle.net/11511/21820
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Procedure for determining seismic vulnerability of building structures
Gulkan, P; Sozen, MA (1999-05-01)
A rationalization for ranking reinforced concrete frame buildings with masonry infill walls with regard to seismic vulnerability is presented The method essentially requires only the dimensions of the structure as input, and is expressed in terms of where its attributes are located in a two-dimensional plot of masonry wall and column percentages. It is shown that increasing drift at the ground story (which is a reasonable expression of increasing vulnerability) is attained by decreasing either attribute It ...
Numerical Study on CFRP Strengthening of Reinforced Concrete Frames with Masonry Infill Walls
Akin, Emre; Ozcebe, Guney; Canbay, Erdem; Binici, Barış (American Society of Civil Engineers (ASCE), 2014-04-01)
In the last decade, a new strengthening methodology has been developed for reinforced concrete (RC) frames with hollow clay tile (HCT) infill walls by means of diagonally applied carbon fiber-reinforced polymer (CFRP) fabrics. In the experimental part of a study conducted by the authors, this user-friendly methodology was experimentally investigated considering different aspect (height/width) ratios of the infill walls. In this study, first a numerical model of the FRP strengthened infill walls strengthened...
Optimum design of double-layer grid systems: comparison with current design practice using real-life industrial applications
Aydıncılar, Yılmaz; Hasançebi, Oğuzhan; Department of Civil Engineering (2010)
Double-layer grid systems are three-dimensional pin-jointed structures, which are generally used for covering roofs having large spans. In this study, evolution strategies method is used to optimize space trusses. Evolution strategies method is a type of evolutionary algorithms, which simulate biological evolution and natural selection phenomenon to find the best solution for an optimization problem. In this method, an initial population is formed by various solutions of design problem. Then this initial po...
Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls
Turgay, Tahsin; Durmus, Meril Cigdem; Binici, Barış; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2014-10-01)
Buildings with masonry infill walls (MIWs) in reinforced concrete (RC) frames are commonly used all around the world. It is well known that infill walls may affect the strength, stiffness, and displacement ductility of the structural system. Different approaches have been adopted in different codes and guidelines to consider the stiffness and strength contribution of MIWs on RC frame behavior. This study compares the ability of the existing guidelines to estimate stiffness, strength, and deformability of RC...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Zorlu, “Evaluation of punching shear strength design and modelling approaches for slab-column connections,” M.S. - Master of Science, Middle East Technical University, 2012.