Development of new lead-free solders for electronics industry

Download
2012
Kantarcıoğlu, Anıl
Joining of electronic components onto the circuit boards is done by soldering operation, during production of all electronic devices. In many countries, including Turkey, traditionally used tin-lead (Sn-Pb) solder alloys have been restricted to be used in consumer electronics appliances because of the toxic effects of lead (Pb) within these alloys. Tin-silver-copper (Sn-Ag-Cu) based alloys have been developed as the most promising candidate that can replace the Sn-Pb alloys. However, various problems have emerged with the increasing trend in use of Sn-Ag-Cu solder alloys in electronics industry, namely large intermetallic compound formation, low wettability and thermal shock resistance. Many researches have been done in the past decade to overcome these problems. The solutions are based on changing the undercooling of the solder alloy; which was determined to be done by either changing the composition of the solder alloy by micro-alloying or changing the cooling rate during soldering operation. In this thesis study Sn-3.5Ag-0.9Cu (wt. %) lead-free solder having the eutectic composition, was micro-alloyed with additions of aluminum (Al), iron (Fe) and titanium (Ti). Experimental results were compared with commercially available near-eutectic Sn-40Pb (wt. %) solder, a commercially available Sn-3.0Ag-0.5Cu (wt. %) solder and also eutectic Sn-3.5Ag.0.9Cu (wt. %) and near-eutectic Sn-3.7Ag-0.9Cu (wt. %) solders that were produced for this thesis study. In the first stage of the study, the effects of 0.05 wt. % of Al, Fe and Ti micro-alloying were investigated. When preliminary results of mechanical and thermal test were compared, Fe was found to make positive effect on shear strength and undercooling. Further research was carried out to establish a relationship between the Fe compositions and solder properties. Therefore, 0.01, 0.03, 0.07 and 0.1 wt. % Fe additions were also studied and results were reported. 0.01 wt. % and 0.07 wt. % Fe added solders were found to have a smaller undercooling, resulting with dispersed intermetallic compound (IMC) and thus has highest shear strength. Different cooling rates; 0.017, 0.17 and 1.7 °C/sec were applied to solder-copper joints and microstructures were investigated. Large IMC-free microstructure was achieved by 0.01 wt. % Fe micro-alloyed solder, which was cooled with 1.7 °C/sec rate. Wetting of copper substrate was found to be improved by additions of Al, Fe and Ti compared to alloy with eutectic composition of Sn-Ag-Cu alloy. Selected SAC+X alloys have been subjected to thermal shock experiments for crack formation analysis on the copper substrate-solder joints. The results showed that SAC+0.05Al solder has the higher thermal shock resistance, which no cracks were observed after 1500 cycles of thermal shock. In order to understand the insights of SAC performance, some of the lead-free solders were applied onto printed circuit boards for thermal shock resistance test. These results have indicate that the cracking may occur after thermal shock cycles due to process conditions of soldering operation (i.e. cooing rate), independent of the solder alloy composition.

Suggestions

Study of mechanics of physically transient electronics: A step toward controlled transiency
Çınar, Simge; CHEN, Yuanfen; Hashemi, Nastaran; Montazami, Reza (2016-02-15)
Transient electronics is a class of electronic devices designed to maintain stable operation for a desired and preset amount of time; and, undergo fast and complete degradation and deconstruction once transiency is triggered. Controlled and programmed transiency in solvent-triggered devices is strongly dependent on chemical and physical interactions between the solvent and the device, as well as those within the device itself, among its constituent components. Mechanics of transiency of prototypical transie...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Implementation of a risc microcontroller using fpga
Gümüş, Raşit; Güran, Hasan; Department of Electrical and Electronics Engineering (2005)
In this thesis a microcontroller core is developed in an FPGA. Its instruction set is compatible with the microcontroller PIC16XX series by Microchip Technology. The microcontroller employs a RISC architecture with separate busses for instructions and data. Our goal in this research is to implement and evaluate the design in the FPGA. Increasing performance and gate capacity of recent FPGA devices permits complex logic systems to be implemented on a single programmable device. Such a growing complexity dema...
Analysis and design of passive microwave and optical devices using the multimode interference technique
Sunay, Ahmet Sertaç; Birand, Mehmet Tuncay; Department of Electrical and Electronics Engineering (2005)
The Multimode Interference (MMI) mechanism is a powerful toool used in the analysis and design of a certain class of optical, microwave and millimeter wave devices. The principles of the MMI method and the self-imaging principle is described. Using this method, NXM MMI couplers, MMI splitter/combiners are analyzed. Computer simulations for illustrating the "Multimode Interference Mechanism" are carried out. The MMI approach is used to analyze overmoded 'rectangular metallic' and 'dielectric slab' type of wa...
Reliability improvement of RF MEMS devices based on lifetime measurements
Gürbüz, Ozan Doğan; Demir, Şimşek; Akın, Tayfun; Department of Electrical and Electronics Engineering (2010)
This thesis presents fabrication of shunt, capacitive contact type RF MEMS switches which are designed according to given mm-wave performance specifications. The designed switches are modified for investigation in terms of reliability and lifetime. To observe the real-time performance of switches a time domain measurement setup is established and a CV (capacitance vs. voltage) curve measurement system is also included to measure CV curves, pull-in and hold-down voltages and the shifts of these due to actuat...
Citation Formats
A. Kantarcıoğlu, “Development of new lead-free solders for electronics industry,” M.S. - Master of Science, Middle East Technical University, 2012.