Roll characteristics and shape optimization of the free-to-rotate tail-fins on a canard-controlled missile

Download
2014
Feyzioğlu, Erhan
In this thesis, a numerical investigation of roll motion characteristics and planform optimization of free-to-rotate tail fins are performed. Steady and unsteady, asymmetric flows due to the aileron deflection in canard fins are computed by solving the Reynolds-Averaged Navier-Stokes (RANS) solutions with FLUENT. Instantaneous unsteady aerodynamic loads and the moment of inertia of the tail fins are used to evaluate the angular displacement of the tail fins. The rotary grid motion is then implemented by a User-Defined-Function (UDF) developed. The unsteady solution provides the roll motion history and the final steady roll rate of the free-to-rotate tail fins. The numerical methodology is first validated on two test cases for which the experimental data are available. A gradient based planform optimization is then performed on the free-to-rate tail fins in order to minimize the roll rate while not allowing any reduction in the total normal force. The gradient vector of the objective function and the line search along the gradient vector are performed by discrete evaluations. The optimum tail fin planform reduces the roll rate of the tail fins by about 6% and increases the normal force by about 4%.

Suggestions

Thrust vector control by secondary injection
Erdem, Erinç; Albayrak, Kahraman; Department of Mechanical Engineering (2006)
A parametric study on Secondary Injection Thrust Vector Control (SITVC) has been accomplished numerically with the help of a commercial Computational Fluid Dynamics (CFD) code called FLUENT®. This study consists of two parts; the first part includes the simulation of three dimensional flowfield inside a test case nozzle for the selection of parameters associated with both computational grid and the CFD solver such as mesh size, turbulence model accompanied with two different wall treatment approaches, and s...
Parallel navier stokes solutions of low aspect ratio rectangular flat wings in compressible flow
Durmuş, Gökhan; Eyi, Sinan; Department of Aeronautical Engineering (2004)
The objective of this thesis is to accomplish the three dimensional parallel thin-layer Navier-Stokes solutions for low aspect ratio rectangular flat wings in compressible flow. Two block parallel Navier Stokes solutions of an aspect ratio 1.0 flat plate with sharp edges are obtained at different Mach numbers and angles of attack. Reynolds numbers are of the order of 1.0E5-3.0E5. Two different grid configurations, the coarse and the fine grids, are applied in order to speed up convergence. In coarse grid co...
Gas-kinetic methods for 3-d inviscid and viscous flow solutions on unstructured/hybrid grids
Ilgaz, Murat; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2007)
In this thesis, gas-kinetic methods for inviscid and viscous flow simulations are developed. Initially, the finite volume gas-kinetic methods are investigated for 1-D flows as a preliminary study and are discussed in detail from theoretical and numerical points of view. The preliminary results show that the gas-kinetic methods do not produce any unphysical flow phenomena. Especially the Gas-Kinetic BGK method, which takes into account the particle collisions, predicts compressible flows accurately. The Gas-...
A layerwise approach to modeling piezolaminated plates
Ertürk, Cevher Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2005)
In this thesis, optimal placement of adhesively bonded piezoelectric patches on laminated plates and the determination of geometry of the bonding area to maximize actuation effect are studied. A new finite element model, in which each layer is considered to be a separate plate, is developed. The adhesive layer is modeled as a distributed spring system. In this way, relative transverse normal and shear motion of the layers are allowed. Effect of delamination on the adhesive layer stresses is also studied and...
Evaluation of a new turbulence model for boundary layer flows with pressure gradient
Marangoz, Alp; Çıray, Cahit; Department of Aerospace Engineering (2005)
In this thesis, a new turbulence model developed previously for channel and flat plate flows is evaluated for flat plate flows with pressure gradient. For this purpose a flow solver, which uses boundary layer equations as the governing equations and Von Karman momentum integral equation for the calculation of skin friction, is developed. It is shown that the error of the new turbulence model, in predicting the velocity profile, is less than 5 % for the flat plate flows without pressure gradient and less tha...
Citation Formats
E. Feyzioğlu, “Roll characteristics and shape optimization of the free-to-rotate tail-fins on a canard-controlled missile,” M.S. - Master of Science, Middle East Technical University, 2014.