Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multiscale pore structure characterization and pore network modeling of middle east carbonates
Download
index.pdf
Date
2017
Author
Gündoğar, Satı Aslı
Metadata
Show full item record
Item Usage Stats
243
views
113
downloads
Cite This
The complex interplay between structural and wettability heterogeneities is responsible for the limited pore network modeling studies on carbonates. In this study, our purpose is to develop structurally representative pore networks of Middle East carbonates and to predict their macroscopic difficult-to-measure relative permeability and capillary pressure hysteresis curves and residual oil trends under mixed-wettability conditions. In comparison with the conventional pore-scale models, particular emphasis is put on multiscale pore structure characterization of complex carbonates. Scanning electron microscopy (SEM) imaging at multiple magnifications (75X and 750X) as well as physical core measurements, namely helium pycnometry and high-pressure (33,000 psi) mercury intrusion porosimetry (MIP) are employed to determine quantitative pore network descriptors. Mosaics constructed from overlapping low magnification (75X) views reveal abundant evidence of unresolved microporosity within the carbonate samples. Multiscaled SEM pore-size distributions incorporate microporous features as small as 0.077 μm and macropores as large as 310 μm into a single pore system. A pore body-throat classification method is developed with an initial premise of strong spatial size correlation between pore bodies and their connected throats. Six pore classes are identified with unique pore- and throat-size distributions. The average coordination number ranges mostly from 3 to 5, and irregular triangle-shaped cross-sections dominate the carbonate pore geometry. The pore body to throat aspect ratio is generally large (>2.5), indicating the potential for significant residual oil saturation. A novel quasi-static two-phase flow simulator is developed for a complete primary drainage-secondary imbibition-secondary drainage cycle with arbitrary wettability. Incorporating wettability alteration and contact angle hysteresis, the critical roles of corner wetting films and intermediate layers on fluid continuity and accordingly on recovery are investigated. The model predictions display a significant dependency on the interaction of pore structure, wettability, and saturation history. During spontaneous imbibition, snap-off becomes dominant in the systems with high aspect ratio and results in large amounts of trapped oil. It is shown that residual oil saturation is lower for more strongly oil-wet systems by means of the abundant presence of oil layers, while the endpoint water relative permeability increases gradually with the oil-wetness. The continuity of a phase is deduced to be the critical factor for its relative permeability rather than its abundance in the pore system. It is concluded that our newly proposed network model succeeds to represent experimentally hard-to-measure capillary pressure and relative permeability hysteresis trends for mixed-wet systems.
Subject Keywords
Image analysis.
,
Carbonate rocks.
,
Sedimentary rocks.
,
Geological modeling.
URI
http://etd.lib.metu.edu.tr/upload/12620814/index.pdf
https://hdl.handle.net/11511/26331
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Dielectric matrix influence on the photoluminescence properties of silicon nanocrystals
Ferraioli, L.; Cazzanelli, M.; Daldosso, N.; Mulloni, V.; Bellutti, P.; Yerci, Selçuk; Turan, Raşit; Mikhaylov, A.n.; Tetelbaum, D.ı.; Pavesi, L. (null; 2006-12-01)
Photoluminescence properties of silicon nanocrystals embedded in five different oxide matrices are analyzed. Samples are silicon rich oxide and oxynitride produced by PECVD and ion implantation and crystalline and amorphous aluminum oxide implanted with silicon.
Unified theory of linear instability of anisotropic surfaces and interfaces under capillary, electrostatic, and elastostatic forces: The regrowth of epitaxial amorphous silicon
Ogurtani, Tarik Omer (American Physical Society (APS), 2006-10-01)
The first-order unified linear instability analysis (LISA) of the governing equation for the evolution of surfaces and interfaces under capillary, electromigration (EM), and elastostatic forces is developed. A formal treatment of the thermomigration (Soret effect) driven by the nonuniform temperature distribution caused by exothermic phase transformation (growth) at the surface and interfacial layers is presented and its apparent influence on the capillary force in connection with the stability is also esta...
Adsorption of water and ammonia on TiO2-anatase cluster models
Önal, Işık; Senkan, Selim (2006-06-15)
Density functional theory (DFT) calculations performed at B3LYP/6-31G** level are employed to study water and ammonia adsorption and dissociation on (101) and (001) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated s...
Multichromic benzimidazole-containing polymers: Comparison of donor and acceptor unit effects
Nurioglu, Ayda Goycek; Akpinar, Hava; Sendur, Merve; Toppare, Levent Kamil (2012-09-01)
This study reports a comparative study on electrochromic properties of two donoracceptordonor (DAD)-type polymers namely poly(2-heptyl-4,7-di(thiophen-2-yl)-1H-benzo [d]imidazole) (BImTh) and poly(4,7-bis(2,3-dihydrothieno[3,4-b] [1,4]dioxin-5-yl)-2-heptyl-1H-benzo[d]imidazole) (BImEd). DAD-type monomers were polymerized electrochemically on indium tin oxide-coated glass slides to determine the optical properties of the polymers. Electrochemical rho-doping experiments were performed to determine the band ga...
Silicon nanowire-silver indium selenide heterojunction photodiodes
KULAKCI, Mustafa; ÇOLAKOĞLU, Tahir; OZDEMİR, Baris; Parlak, Mehmet; Ünalan, Hüsnü Emrah; Turan, Raşit (IOP Publishing, 2013-09-20)
Structural and optoelectronic properties of silicon (Si) nanowire-silver indium selenide (AgInSe2) thin film heterojunctions were investigated. The metal-assisted etching method was employed to fabricate vertically aligned Si nanowire arrays. Stoichiometric AgInSe2 films were then deposited onto the nanowires using co-sputtering and sequential selenization techniques. It was demonstrated that the three-dimensional interface between the Si nanowire arrays and the AgInSe2 thin film significantly improved the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. A. Gündoğar, “Multiscale pore structure characterization and pore network modeling of middle east carbonates,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.