Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CFD simulation of train fire in the İstanbul metro tunnel
Download
index.pdf
Date
2018
Author
Bilge, Mahir İlter
Metadata
Show full item record
Item Usage Stats
297
views
214
downloads
Cite This
Underground metro networks are expanding rapidly in all around the world and during the last few decades, tunnel fire accidents with severe casualties occurred in various countries. The frequency of the tunnel fire incidents will be increasing due to the increased amount of underground transportation routes in the upcoming years. In order to prevent the loss of lives in tunnel fires, accurate design of Tunnel Ventilation Systems is crucial. This research thesis presents the simulation of a mid-train fire scenario in the tunnel of the Marmaray Metro Line by the use of Fire Dynamics Simulator (FDS) Computational Fluid Dynamics (CFD) Software. The main goal of the simulation is to determine the efficiency of the emergency ventilation system in case of a mid-train fire in the metro tunnels and investigate the ways to increase the safety degrees in underground metro tunnels. Since mid-train fires are not widely studied, one purpose of this thesis is to attract attention to the risks associated with tunnel ventilation system activation in case of a mid-tunnel fire. In order to determine the boundary conditions of the CFD Simulation, on site measurements are carried out for the selected fire scenarios in the tunnel network. Full scale three dimensional tunnel geometry is modeled along with the five car train and the growth of fire is modeled by making use of appropriate approximations. Contour plots of temperature and visibility are obtained for the cases with and without the activation of Tunnel Ventilation Systems (TVS) and the tenability criterion in the tunnel was examined by making use of widely accepted standards. By making a comparison of results with and without the TVS activation, it is concluded that during the mid-train tunnel fire, fan operation adversely effects the tenability conditions for the passengers at the downstream side of the fire. Therefore, for the studied fire scenario, it is safer to disable the ventilation fans and allow the passengers self-evacuate and activate the fans after evacuation to assist the fire-fighters.
Subject Keywords
Fire prevention.
,
Fire management.
,
Heating and ventilation.
,
Computational fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12622402/index.pdf
https://hdl.handle.net/11511/27436
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
CFD simulation of train fire in the İstanbul metro tunnel
Bilge, Mahir İlter; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2018)
Underground metro networks are expanding rapidly in all around the world and during the last few decades, tunnel fire accidents with severe casualties occurred in various countries. The frequency of the tunnel fire incidents will be increasing due to the increased amount of underground transportation routes in the upcoming years. In order to prevent the loss of lives in tunnel fires, accurate design of Tunnel Ventilation Systems is crucial. This research thesis presents the simulation of a mid-train fire sc...
3D forest fire propagation simulation
Koese, Kivanc; Grammalidis, Nikolaos; Yılmaz, Erdal; Cetin, Enis (2008-05-30)
The increase in the number of forest fires in the last few years dispatch governments to take precautions. Besides prevention, early intervention is also very important in fire fighting. If the firefighters know where the fire will be in some time, it would be easier for them to stop the fire. Therefore a big need for simulating the fire behavior exists. In this paper we are proposing a system which can simulate the propagation of fire in time. Also this system can visualize the propagation of fire in any 3...
Identifying buildings with high collapse risk based on samos earthquake damage inventory in Izmir
Binici, Barış; Yakut, Ahmet; Canbay, Erdem; Tuncay, Kağan (2022-01-01)
Samos Earthquake caused the collapse of about fifty buildings in Izmir city center, resulting in over 120 fatalities. The response spectra of the ground motions at the soft soil sites in Izmir revealed that the spectral accelerations in the period range of 0.5-1.5 s are similar to the spectral accelerations defined by the response spectrum corresponding to the 72-year return period. Despite experiencing accelerations lower than those defined by the Turkish Code design spectrum (475-year return period), sign...
Seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat; Department of Engineering Sciences (2009)
The catastrophic damage to the infrastructure due to the most recent major earthquakes around the world demonstrated the seismic vulnerability of many existing reinforced concrete buildings. Accordingly, this thesis is focused on a proposed seismic retrofitting system (PSRS) configured to upgrade the performance of seismically vulnerable reinforced concrete buildings. The proposed system is composed of a rigid steel frame with chevron braces and a conventional energy dissipating shear link. The retrofitting...
Fire tests of cut and cover tunnel roof segments at positive moment region
Arsava, Kemal Sarp; Arsava, Kemal Sarp; Department of Civil Engineering (2011)
The most important issue during a tunnel fire is safety of human life. The tunnel fire structural research and investigations have gained more importance in the last decade but studies show variable results depending on the concrete quality and tunnel design fire. For instance, a certain type of concrete with high moisture content can tend to explode in the first 10-15 minutes of fire with rapid increase of heat release rate. A sudden collapse of the tunnel roof during the fire is unacceptable. Especially i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. İ. Bilge, “CFD simulation of train fire in the İstanbul metro tunnel,” M.S. - Master of Science, Middle East Technical University, 2018.