Fabrication and Characterization of Gold-Tin Eutectic Bonding for Hermetic Packaging of MEMS Devices

2014-12-05
DEMIR, Eyup Can
TORUNBALCI, M. Mert
DONMEZ, Inci
Kalay, Yunus Eren
Akın, Tayfun
This paper presents the fabrication of wafer-level hermetic encapsulation for MEMS devices using low-temperature (300 degrees C) Au-Sn bonding together with their pre- and post-bonding characterization. Thermal evaporation method was used for metallization which is easy and controllable method for low thickness metallization. In this respect, the current study represents preliminary characterization results of Au-Sn pre-and post-bonding with an average thickness of less than 1.5 mu m processed by thermal evaporation method. The real fabrication conditions for commercial sensor devices were simulated during the bonding trials. The optimum bonding was applied to sensor devices to ensure the reliability of the encapsulation. The average shear-strength upon constant strain rate of 0.5 mm.min(-1) was found to be around 23 MPa which indicates a mechanically strong bonding for 1.5 mu m thick sealing rings.

Suggestions

Thermal analysis of gray cast iron by interpretation of cooling curves
Çetin, Arda; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (2002)
The aim of the present work is to investigate the relations between data obtained from the cooling curve and its first and second derivatives and the as-cast microstructure of gray cast iron, assuming that the cooling curve reflects the complete history of the solidification process. Fourteen different alloy compositions are prepared in order to obtain statistical predictive models to relate cooling curve parameters with the solidification variables such as chemical analysis, inoculation, graphite shape, pr...
Design and implementation of low leakage MEMS microvalves
Yıldırım, Ender; Külah, Haluk; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2011)
This thesis presents analysis, design, implementation, and testing of electrostatically actuated MEMS microvalves. The microvalves are specifically designed for lab-on-a-chip applications to achieve leakage ratios below 0.1 at pressure levels in the order of 101 kPa. For this purpose, two different microvalves are presented in the study. In the proposed designs, electrostatic actuation scheme is utilized to operate the microvalves in normally open and normally closed modes. Characterization of normally open...
Characterization of cross-coupling in capacitive micromachined ultrasonic transducers
Bayram, Barış; Yaralioglu, GG; Oralkan, O; Lin, DS; Zhuang, XF; Ergun, AS; Sarioglu, AF; Wong, SH; Khuri-Yakub, BT (2005-01-01)
This paper analyzes element-to-element and cell-to-cell cross-coupling in capacitive micromachined ultrasonic transducers (cMUTs) using an interferometer. In a 1-D linear cMUT array immersed in oil, a single element was excited, and membrane displacements were measured at different positions along the array with an interferometer. Electrical measurements of the received voltage on each array element were also performed simultaneously to verify the optical measurements. The array was then covered with a poly...
Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Analysis and characterization of an electrostatically actuated in-plane parylene microvalve
Yıldırım, Ender; Külah, Haluk (IOP Publishing, 2011-10-01)
This paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Microvalves with different diaphragm radii are fabricated using surface micromachining techniques. Pull-in tests are carried out under the no-flow condition with ai...
Citation Formats
E. C. DEMIR, M. M. TORUNBALCI, I. DONMEZ, Y. E. Kalay, and T. Akın, “Fabrication and Characterization of Gold-Tin Eutectic Bonding for Hermetic Packaging of MEMS Devices,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34271.