Analytical model for superconducting generators for wave energy systems

Bernholz, Jan
Keysan, Ozan
Mueller, MA
The objective of the research is to obtain a better understanding of the feasibility of superconducting machine concepts for wave energy systems. These topologies were previously investigated by Keysan with regards to wind energy. An optimization design tool is developed in Matlab for the electrical design of the machine types. Two case studies, namely the Archimedes Wave Swing and the Oyster wave energy converter for the double-claw pole design are applied and presented in this work. The main advantage of the configurations is the significantly less superconducting tape requirement compared to conventional configurations. Both designs apply less than 10 km of superconducting tape.


Investigation of Self-Excited Ultrahigh Speed Induction Generators for Distributed Generation Systems
Jardan, Rafael K.; Varga, Zoltan; Nagy, Istvan (2011-09-10)
Application of ultra high speed induction generators (IG) in a system developed for utilization of renewable and waste energies that can be applied in Distributed Generation System is presented. The energy conversion is made by a turbine-generator set. For the electromechanical energy conversion application of special high speed induction generators has been studied and described in the paper. The design and analysis of the system are relied on computer simulation techniques verified by test results.
Evaluation and Comparisons of the Models to Calculate Solar Irradiation on Inclined Solar Panels for Ankara
Özden, Talat; Akınoğlu, Bülent Gültekin; Karaveli, Abdullah Buğrahan (2017-11-29)
In the optimization and feasibility analysis of renewable energy systems, the accuracy of the simulation methods is extremely important. Thus, in the case of solar energy systems, estimating the monthly average daily solar irradiation incident on inclined solar panels is the main step of long-term feasibility analysis toward reaching the viable investments. In fact, most solar energy investor companies use silicon solar irradiation measuring instruments in Turkey although only a few of them also measure the...
Investigation of structural and electrochemical properties of biomass based activated carbon materials for energy storage applications
Köse, Kadir Özgün; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2017)
Finding new energy sources and efficient ways for energy storage is one of the primary goals in both scientific and industrial research. To achieve this purpose, studies are concentrated on optimizing the characteristics of energy storage devices such as batteries, fuel cells and supercapacitors. Activated carbon (AC), beside its versatile application areas including wastewater and gas treatment, is used as electrodes in electrical double layer capacitors and as cathode in metal air batteries due to its hig...
Numerical modeling and performance analysis of solar-powered ideal adsorption cooling systems
Taylan, Onur; Baker, Derek Keıth; Department of Mechanical Engineering (2010)
Energy consumption is continuously increasing around the world and this situation yields research to find sustainable energy solutions. Demand for cooling is one of the reasons of increasing energy demand. This research is focused on one of the sustainable ways to decrease energy demand for cooling which is the solar-powered adsorption cooling system. In this study, general theoretical performance trends of a solar-powered adsorption cooling system are investigated using TRNSYS and MATLAB. Effects of differ...
Elastic and Inelastic Near-Fault Input Energy Spectra
Alici, F. Soner; Sucuoğlu, Haluk (SAGE Publications, 2018-05-01)
The main purpose of this study is to develop a reliable model for predicting the input energy spectra of near-fault ground motions for linear elastic and inelastic systems, and to evaluate the effect of damping and lateral strength on energy dissipation demands. An attenuation model has been developed through one-stage nonlinear regression analysis. Comparative results revealed that near-fault ground motions have significantly larger energy dissipation demands, which are very sensitive to earthquake magnitu...
Citation Formats
J. Bernholz, O. Keysan, and M. Mueller, “Analytical model for superconducting generators for wave energy systems,” 2016, Accessed: 00, 2020. [Online]. Available: