Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A modular micromachined high-density connector system for biomedical applications
Date
1999-04-01
Author
Akın, Tayfun
Nikles, SA
Najafi, K
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
207
views
0
downloads
Cite This
This paper presents a high-density, modular, low-profile, small, and removable connector system developed using micromachining technologies for biomedical applications. This system consists of a silicon or polyimide electrode with one end in contact with the biological tissue and its back-end supported in a titanium base (12.5 mm in diameter and 2.5 mm in height) that is fixed on the test subject. An external glass substrate (6 x 6 x 0.75 mm(3)), which supports a flexible polyimide diaphragm and CMOS buffers, is attached to the titanium base whenever electrical contact is required. The polyimide flexible diaphragm contains high-density gold electroplated pads (32 pads, each having an area of 100 x 100 mu m(2) and separated by 150 mu m) which match similar pads on the electrode back-end. When vacuum is applied between the two, the polyimide diaphragm deflects and the corresponding gold pads touch, therefore, establishing electrical connection. In vitro electrical tests in saline solution have been performed on a 32-site connector system demonstrating <5 Omega contact resistance, which remained stable after 70 connections, and -55 dB crosstalk at 1 kHz between adjacent channels. In vivo experiments have also confirmed the establishment of multiple contacts and have produced simultaneous biopotential recordings from the guinea pig occipital cortex.
Subject Keywords
Biomedical microsystems
,
High-density connectors
,
Implantable devices
URI
https://hdl.handle.net/11511/34804
Journal
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
DOI
https://doi.org/10.1109/10.752944
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Thermal and Electro-magnetic Hybrid MOEMS Microscanner with Integrated Spatial Light Modulation and Metalens for Resolution Enhancement of Infrared Imaging Systems
Sozak, Ahmet; Simsek, Ertug; Yelboga, Tolga; Gungor, Alper; Balli, Fatih; Azgın, Kıvanç (2022-01-01)
IEEEThis article describes the development of a novel integrated thermal and electro-magnetic hybrid micro opto-electro mechanical system (MOEMS) based scanning actuator. Determining the optical architecture and components used for scanning are significant points of the study. A metalens and a coded mask, both of which can be produced by micro fabrication methods, are used in the optical part of the actuator. In this context, a metalens consisting of nano-holes was designed and fabricated as the first alter...
A development tool for design and analysis of MEMS based EM energy scavengers
Turkyilmaz, Serol; Külah, Haluk; Muhtaroglu, Ali (2010-12-01)
This paper presents a development tool for estimating the performance of an electromagnetic (EM) vibration-to-electrical MEMS energy scavenger for low power mobile computing and wireless sensor applications. The tool takes design and excitation parameters as input, and estimates output voltage waveforms and power levels. It has been correlated against validation data, and used for early evaluation and design of new MEMS modules, which could not be optimized using off-the-shelf design packages. The tool was ...
A Digitally programmable application specific integrated circuit for drive and data acquisition of imaging sensorsMethod of moments analysis of slotted waveguide antenna arrays
Bayhan, Nusret; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2014)
This thesis explains the implementation of a digital programmable Application Specific Integrated Circuit (ASIC) designed for imaging applications. The primary function of this ASIC is to drive imaging sensors and to do basic processing on the digital video data coming from the sensors. The ASIC is designed to handle the communication between the imaging sensor and the system. Using command based high-level instructions, this two-way communication is simplified. The ASIC can also be used to store and update...
A CMOS switched-capacitor interface circuit for an integrated accelerometer
Külah, Haluk; Najafi, K (2000-01-01)
This paper presents a CMOS interface electronics for monolithic micromachined capacitive accelerometer systems. The interface electronics is a fully differential switched-capacitor charge integrator with its internal clock generator and sensor feedback circuit for closed-loop operation. The circuit is designed for open-loop and closed-loop operations, and provides both digital and differential analog outputs. One of the main advantages of this chip is that it can be monolithically integrated with the sensor...
A Low-power memory CMOS integrated circuit for image sensors
Üstündağ, Mithat Cem Boreyda; Akın, Tayfun; Department of Electrical and Electronics Engineering (2015)
This thesis presents a low power SRAM block implemented in a 0.35 μm CMOS technology for imaging applications to be used inside a digital image processor ASIC (Application Specific Integrated Circuit). The SRAM structure is designed to be fast enough to store all the image data fed by a large format readout circuitry such as VGA (640x512), while requiring low power consumption. The low power consumption is a very critical requirement of such circuit, as the circuit will eventually be used in an embedded pla...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Akın, S. Nikles, and K. Najafi, “A modular micromachined high-density connector system for biomedical applications,”
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
, pp. 471–480, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34804.