Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Material and device properties of Si-based Cu0.5Ag0.5InSe2 thin-film heterojunction diode
Date
2020-01-01
Author
Gullu, H. H.
Isik, M.
Delice, S.
Parlak, Mehmet
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
184
views
0
downloads
Cite This
Cu0.5Ag0.5InSe2 (CAIS) thin films were deposited on a glass substrate by sequential sputtering of Cu, Ag, and In2Se3-stacked film layers. Structural characterization showed that the deposited CAIS film satisfies nearly the stoichiometric form with uniform and homogeneous surface structure. The single-phase polycrystalline behavior without any secondary-phase formation was observed from the diffraction profile. The optical properties were investigated using temperature-dependent transmission measurements in the wavelength region of 600-1100 nm and in between 10 and 300 K. In the region of interest, the transmission spectra shifted towards the higher wavelengths as a result of an increase in the sample temperature. The analysis of the absorption data based on the transmission spectra resulted in absorption coefficient values of around 10(5) cm(-1) and the presence of direct allowed optical transition. From the Tauc plots, CAIS samples were found to have three distinct direct optical transitions depending on the possible splitting in the valence band. The obtained room temperature uppermost band gap energy value of 1.09 eV was found in the energy limit of ternary analogues (CuInSe2 and AgInSe2), and also in a good agreement with the previous works in the literature. The dependency of the band gap energy on the temperature was analyzed using fundamental relations. In addition, the electrical characteristics of the film layer were discussed in four-contact conductivity measurements, and room temperature conductivity was observed as 0.8 ohm(-1) cm(-1). Additionally, two activation energy values were found in the temperature-dependent conductivity profile. As a diode application, CAIS/Si heterojunction was fabricated and the main diode parameters were extracted at dark and room temperature conditions.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/36876
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-019-02673-3
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Temperature dependence of electrical properties in Cu0.5Ag0.5InSe2/Si heterostructure
Gullu, H. H.; Parlak, Mehmet (Springer Science and Business Media LLC, 2018-07-01)
The polycrystalline Cu0.5Ag0.5InSe2 thin film was deposited on mono-crystalline n-Si wafer by sequential thermal evaporation of elemental sources. p-Cu0.5Ag0.5InSe2/n-Si heterojunction diode was fabricated and the current-voltage characteristics of the diode at various temperatures were investigated to determine the main diode parameters and dark current transport mechanism. The studied diode structure showed a rectifying behavior with a barrier height of 0.63 eV at room temperature. Series and shunt resist...
Frequency effect on electrical and dielectric characteristics of In/Cu2ZnSnTe4/Si/Ag diode structure
Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoğlu, Makbule; Yildiz, D. E.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with s...
Material and Si-based diode analyses of sputtered ZnTe thin films
Güllü, Hasan Hüseyin; Surucu, O. Bayrakli; Isik, M.; Terlemezoglu, M.; Parlak, M. (Springer Science and Business Media LLC, 2020-07-01)
Structural, optical, and electrical properties ZnTe thin films grown by magnetron sputtering technique were studied by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and electrical conductivity measurements. Structural analyses showed that ZnTe thin films grown on soda-lime glass substrates have a cubic crystalline structure. This crystalline nature of the films was also discussed in terms of Raman active modes. From atomic force microscopy images, the smooth and dense surface profile was o...
Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode
Gullu, H. H.; Yildiz, D. E.; Surucu, O.; Parlak, Mehmet (Springer Science and Business Media LLC, 2020-06-01)
This study reveals the electrical properties of In/HfO2/n-Si structure with atomic layer-deposited interfacial oxide layer, HfO2 thin film between In top metal contact and monocrystalline Si wafer substrate. From the dark current-voltage measurements, the diode structure showed good rectifying behavior and low saturation current of about two order of magnitude and 1.2 x 10(- 9) A, respectively. According to the conventional thermionic emission model, zero-bias barrier height and ideality factor were calcula...
Characteristics of HfO2 and SiO2 on p-type silicon wafers using terahertz spectroscopy
Altan, Hakan; Pham, D.; Grebel, H.; Federici, J. F. (IOP Publishing, 2007-05-01)
The effect of high-kappa dielectric HfO2 films on 200 mm diameter p-type silicon substrates was investigated and compared with conventional dielectric material, SiO2. We employed all-optical characterization methods using terahertz (THz) time-domain spectroscopy and visible cw pump/THz probe spectroscopy. Measurements were performed on two sets of samples, each set containing both HfO2 and SiO2 coated wafers with varying thickness of oxide layer. One set had a protective coating of either photoresist or Si3...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Gullu, M. Isik, S. Delice, M. Parlak, and N. Hasanlı, “Material and device properties of Si-based Cu0.5Ag0.5InSe2 thin-film heterojunction diode,”
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
, pp. 1566–1573, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36876.