Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs

2014-12-01
Turan, Janset
Kesik, Melis
Soylemez, Saniye
GÖKER, SEZA
Kolb, Marit
Bahadir, Mufit
Toppare, Levent Kamil
In this study, a new amperometric biosensor was developed for the detection of the anti-dementia drugs fortified with tap water. For this purpose, electrocopolymerization of 5,6-bis(octyloxy)-4,7-di(thiophen2-yl)benzo[c][1,2,5]oxadiazole(BODT) with (2-(((9H-fluoren-9-yl)methoxy)carbonylamino) acetic acid (FMOC) on graphite electrode was successfully achieved and used as an immobilization matrix. Acetylcholinesterase (AChE) and choline oxidase (ChO) enzyme couple was immobilized on copolymer coated graphite electrode via covalent binding with the help of carbodiimide chemistry. Changes in the responses of the proposed biosensor based on AChE inhibition were recorded using acetylcholine as the substrate. The bi-enzymatic biosensor based on conducting copolymer showed good linear detection range between 0.01 and 12.0 mM and a detection limit (LOD) of 0.014 mM to acetylcholine. Surface and electrochemical characterization were performed via Scanning Electron Microscopy (SEM) and cyclic voltammetry (CV) techniques. Moreover, the design biosensor system was tested for the detection of neostigmine and donepezil as pharmaceuticals in fortified tap water samples. Very low detection limits of 0.027 mu g/L donepezil and 0.559 mu g/L neostigmine were achieved. The analysis of spiked tap water proved the biosensor capability to be used. The results were found to be in good agreement with the ones determined by HPLC/DAD technique.
JOURNAL OF ELECTROANALYTICAL CHEMISTRY

Suggestions

Development of a new ethanol biosensor based on polyfluorene- g- poly(ethyleneglycol) and multiwalled carbon nanotubes
Deniz, Sıddıka Aybüke; Toppare, Levent Kamil; Söylemez, Saniye; Department of Chemistry (2021-2-5)
In this thesis study, a novel amperometric biosensor containing a conjugated polymer and a multiwalled carbon nanotube was developed for ethanol detection. Conjugated polymers have gained interest in biosensing and biomedical applications recently. Their ability to increase the effective surface area and adjustable surface morphology make them convenient candidates for suitable enzyme immobilization. The conjugated polymer poly(ethylene glycol) is soluble in both water and organic solvents. Besides, it inte...
Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation
USLU, AYLİN; Ozcan, Elif; TÜMAY, SÜREYYA OĞUZ; Kazan, Hasan Huseyin; YEŞİLOT, SERKAN (Elsevier BV, 2020-04-01)
A general synthetic strategy is developed to synthesize water soluble receptors by employing tripodal system based on a cyclotriphosphaze platform. The developed model is successfully synthesized and characterized by using elemental analysis, FT-IR, MALDI-TOF, H-1 NMR, C-13 NMR and P-31 NMR techniques. The fluorescence sensing performance of prepared water soluble tripodal systems were evaluated by UV/Vis and fluorescence spectroscopies. According to obtained results, two novel water-soluble sensing platfor...
An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk
Turan, Janset; Kesik, Melis; SÖYLEMEZ, SANİYE; Goker, Seza; Coskun, Sahin; Ünalan, Hüsnü Emrah; Toppare, Levent Kamil (2016-06-02)
In this study, a novel approach for the fabrication of a biosensor utilizing a conducting polymer and silver nanowires is reported. To obtain immobilization platform for butyrylcholinesterase (BChE), a graphite electrode was modified with the poly(5,6-bis(octyloxy)-4,7-di(thieno[3][3,2-b]thiophen-2yl)benzo[c][1,2,5]oxoadiazole) (PTTBO) which has a hydrophobic alkyl chain as the pendant group providing hydrophobic nature to the matrix. Since biomolecules contain both hydrophobic and hydrophilic parts in thei...
Investigation of adsorption of pesticides by organo-zeolite from wastewater
Lüle, Güzide Meltem; Atalay, M Ümit; Özbayoğlu, Gülhan; Department of Mining Engineering (2011)
The aim of this study was to determine the adsorption capacity of activated carbon and organo-zeolites for removal of pesticides in water. In order to prepare organo-zeolite, two kinds of cationic surfactants, namely, hexadecyltrimethyl ammonium bromide (HTAB) and dodecyltrimethyl ammonium bromide (DTAB) were used. Adsorption studies of cationic surfactant on zeolite were investigated in respect to initial concentration of cationic surfactant, time, and temperature. It has been found that the best fitted is...
Development of new synthetic methodologies for indole derivatives
Kılıklı, Ahmet Alper; Balcı, Metin; Department of Chemistry (2010)
Synthesizing nitrogen containing heterocyclic compounds is one of the leading research areas throughout the organic chemistry due to their significant activities on biological systems. Among the various biologically active molecules, indole derivatives are of prime importance on the grounds of their proven clinical roles. Objective of this study is to synthesize new indole derivatives those may contribute treatment of several diseases like their analogues via a recently developed synthetic methodology. Besi...
Citation Formats
J. Turan et al., “Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs,” JOURNAL OF ELECTROANALYTICAL CHEMISTRY, pp. 43–50, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38117.