Hide/Show Apps

A tunable carbon nanotube electromechanical oscillator

2004-09-01
Sazonova, V
Yaish, Y
Toffoli, Hande
Roundy, D
Arias, TA
McEuen, PL
Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection(1,2), radio-frequency signal processing(3,4), and as a model system for exploring quantum phenomena in macroscopic systems(5,6). Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor(7) and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made(8-12). Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.