Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Hydrogen-Bonded Multilayers With Controllable pH-Induced Disintegration Kinetics for Controlled Release Applications From Surfaces
Date
2015-04-03
Author
Bağ, Esra
Begik, Oguzhan
Yusan, Pelin
Erel Göktepe, İrem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
We report on incorporation of coordination complexes into hydrogen-bonded multilayers which was found to be an effective method to control pH-induced disintegration kinetics of hydrogen-bonded multilayers. By taking advantage of the strong metal chelating and hydrogen donating properties of Tannic Acid (TA), coordination complexes of Zr4+ and TA (Zr(IV)-TA complexes) were prepared and then self-assembled at the surface using hydrogen accepting polymers such as poly (N-vinyl caprolactam) (PVCL) or poly(N-isopropyl acrylamide) (PNIPAM). Incorporation of Zr(IV)-TA complexes into hydrogen-bonded multilayers allowed controlling kinetics of pH-induced disintegration of the films. We found that the onset of pH-triggered disintegration of the multilayers could be delayed for similar to 10h at a physiologically related pH, which may be an important feature for controlled delivery applications from surfaces. In contrast to neutral polymer/TA multilayers which dissolve rapidly above their critical pH, multilayers of Zr(IV)-TA complexes dissolved in a linear fashion in a longer period of time than that of multilayers composed solely from hydrogen bonding polymers. Multilayers of Zr(IV)-TA complexes could uptake methylene blue at a moderately acidic pH and release the dye molecules at strongly acidic conditions. This study contributes to fundamental understanding of structure-property relationship in hydrogen-bonded LbL films. Considering the interesting biological properties of TA, multilayers of Zr(IV)-TA complexes may be promising for future biomedical applications.
Subject Keywords
pH-triggered release
,
Layer-by-layer
,
pH-responsive
,
Hydrogen-bonded multilayers
URI
https://hdl.handle.net/11511/40680
Journal
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY
DOI
https://doi.org/10.1080/10601325.2015.1007274
Collections
Department of Chemistry, Article