Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
The Main Electrical and Interfacial Properties of Benzotriazole and Fluorene Based Organic Devices
Date
2013-01-01
Author
Yildiz, Dilber E.
APAYDIN, Dogukan H.
KAYA, Emine
Altindal, Semsettin
Çırpan, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Electrical and interfacial properties of ITO/PEDOT:PSS/poly((9,9-dioctylfluorene)-2,7-diyl(2-dodecyl-benzo[1,2,3]triazole)) (PFTBT)/Au devices were investigated using current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/w-V) measurements at room temperature. The forward and reverse C-V and G/w-V measurements were carried out in the frequency range of 10kHz-1MHz. The electrical parameters, barrier height (phi Bo ) and ideality factor (n) obtained from the forward bias LnI-V plot were found as 0.711eV and 3.8, respectively. In addition, the series resistance (Rs ) was obtained using Norde and Cheung's methods; Rs were found as 19.052k and 19.267k, respectively. The experimental C-V and G/w-V characteristics of these structures at various gate biases show fairly large frequency dispersion especially at low frequencies and applied voltage due to interface states (Nss) in equilibrium with the conjugated copolymer, interfacial polymer and Rs . These observations indicate that at low frequencies, the charges at interface states can easily follow an AC signal and yield an excess capacitance and conductance. On the other hand, the values of Nss were determined using high-low frequency capacitance (CLF -CHF ) method and Nss are of order 1011 eV-1 cm2 which is closer to the values obtained by Hill-Coleman method. Experimental results show that both Nss and Rs values should be taken into account in determining frequency and voltage dependent I-V, C-V and G/w-V characteristics for an organic structure.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/46527
Journal
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY
DOI
https://doi.org/10.1080/10601325.2013.741864
Collections
Department of Chemistry, Article