Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism
Date
2007-01-25
Author
Azgın, Kıvanç
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
This paper presents a new tuning fork gyroscope structure with a highly linear coupling mechanism that keeps the phases of the drive mode oscillating masses exactly opposite with the help of a symmetrically anchored ring-shaped spring. This structure eliminates the risk of drive mode instability due to any lower frequency structural modes and provides very linear drive mode oscillations together with very low g-sensitivity. The gyroscope is fabricated with the SOI-MUMPS process of MEMSCAP. The fabricated gyroscope has bias instability and angle random walk of 200 deg/hr and 5.47 deg/root hr, respectively, according to Allan Variance curve. The g-sensitivy and scale factor are measured as 9.3 (deg/hr)/g and 12mV/(deg/sec) with an R(2) nonlinearity of 0.05%.
URI
https://hdl.handle.net/11511/54341
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate
Alper, Said Emre; Akın, Tayfun (2005-08-01)
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using the dissolved wafer microelectromechanical systems (MEMS) process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high-rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving low bias-drift. The 12-15-mu m-thick si...
An Automatically Mode-Matched MEMS Gyroscope With Wide and Tunable Bandwidth
Sonmezoglu, Soner; Alper, Said Emre; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-04-01)
This paper presents the architecture and experimental verification of the automatic mode-matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to achieve and maintain matched resonance mode frequencies. The system also allows adjusting the system bandwidth with the aid of the proportional-integral controller parameters of the sense-mode force-feedback controller, independently from the mechanical sensor bandwidth. This paper experimentally examines...
A single-crystal silicon symmetrical and decoupled gyroscope on insulating substrate
Alper, SE; Akın, Tayfun (2003-06-12)
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using dissolved wafer process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving a low bias drift. The 12-15mum-thick single-crystal silicon structural layer with...
A Lorentz force MEMS magnetometer
Pala, Sedat; Cicek, Meltem; Azgın, Kıvanç (2016-11-03)
This paper presents a Lorentz force magnetometer with a MEMS resonator structure as a sensor. Magnetometer composed of a resonator and a grill structure. The grill structure reduces the heat generation due to the current required to generate the Lorentz force. The proposed sensor is produced with standard SOI micromachining processes with device layer thickness of 35 mu m. The natural frequency of resonator is around 83 kHz, Q-factor of 1870 at around 40 mTorr ambient pressure. Tests are done for 1.12 mT ma...
An automatically mode-matched MEMS gyroscope with 50 Hz bandwidth
Sonmezoglu, S.; Alper, S.E.; Akın, Tayfun (2012-02-02)
This paper presents the architecture and experimental verification of an automatic mode matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to accomplish and maintain the frequency matching condition. The system also allows controlling the system bandwidth by adjusting the closed loop controller parameters of the sense mode. This study experimentally examines the angle random walk (ARW) and bias instability performances of the fully decoupled MEM...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Azgın and T. Akın, “An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54341.