Electrospun polyacrylonitrile nanofibrous biomaterials

2009-11-01
Ren, Xuehong
Akdağ, Akın
Zhu, Changyun
Kou, Lei
Worley, S. D.
Huang, T. S.
An N-halamine precursor, 3-(5'-methyl-5'-hydantoinyl)acetanilide (1), was synthesized in our laboratory and loaded onto electrospun polyacrylonitrile fiber to prepare nanosized biocidal materials, which could be rendered antimicrobial by exposure to household bleach. Differential scanning calorimetry was used to study the thermal properties of the nanofibers with and without the N-halamine precursor and its chlorinated derivative loaded. Scanning electron microscopy demonstrated that the ultrafine fibers formed with diameters from 250 to 600 nm. Chlorinated nanofibrous mats composed of the fibers were challenged with Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895); they showed promising inactivation efficacies against the two bacterial species within 5 minutes of contact. Potential uses of the antimicrobial fibers include filters for industrial water and air disinfection and protective clothing. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 91A: 385-390,2009
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A

Suggestions

Microstructural, mechanical, and osteocompatibility properties of Mg2+/F--doped nanophase hydroxyapatite
Sun, Zehra Pinar; Ercan, Batur; Evis, Zafer; Webster, Thomas J. (Wiley, 2010-09-01)
Pure as well as Mg2+- and F--doped nanophase (i.e., grain sizes in the nanometer regime in at least one dimension) hydroxyapatite (HA) samples were synthesized by a precipitation method followed by sintering at 1100 degrees C for 1 h to determine their microstructural, mechanical, and osteoblast (bone-forming cell) adhesion properties pertinent for orthopedic applications. Different amounts of Mg2+ and F- ions (specifically from 0 to 7.5 mol %) were doped into the HA samples. X-ray diffraction was used to i...
Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications
Karahaliloglu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; DENKBAŞ, EMİR BAKİ; Webster, Thomas J. (Wiley, 2014-12-01)
Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exp...
Enzymatically induced mineralization of platelet-rich fibrin
Douglas, Timothy E. L.; Gassling, Volker; Declercq, Heidi A.; Purcz, Nicolai; Pamula, Elzbieta; Haugen, Havard J.; Chasan, Safak; de Mulder, Eric L. W.; Jansen, John A.; Leeuwenburgh, Sander C. G. (Wiley, 2012-05-01)
Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, and subsequently incubated in calcium glycerophosphate (CaGP) solution to induce PRFs mineralization with calcium phosphate (CaP) to improve PRFs suitability as a material for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP material within PRF membranes, as confirmed by SEM, ...
Electrolytic magnesium production and its hydrodynamics by using an Mg-Pb alloy cathode
Demirci, Goekhan; Karakaya, İshak (Elsevier BV, 2008-10-06)
Physical interaction of magnesium and chlorine was minimized by collecting magnesium in a molten Ph cathode at the bottom of the electrolyte and placing anode at the top where the chlorine gas was evolved. Thus the magnesium losses associated with the formation of suspending droplets and fine magnesium particles were eliminated and current losses were mainly due to the recombination reaction of dissolved magnesium and chlorine. Current yield changed by changing the tip angle of the conical anode. It was due...
Electrospun nanofibrous scaffolds for tissue engineering
Ndreu, Albana; Hasırcı, Vasıf Nejat; Department of Biotechnology (2007)
In this study a microbial polyester, poly(3-hydroxybutyrate-co-3- hydroxyvalerate) (PHBV), and its blends were wet or electrospun into fibrous scaffolds for tissue engineering. Wet spun fiber diameters were in the low micrometer range (10-50 μm). The polymer concentration and the stirring rate affected the properties the most. The optimum concentration was determined as 15% (w/v). Electrospun fiber diameters, however, were thinner. Solution viscosity, potential, distance between the syringe tip and the coll...
Citation Formats
X. Ren, A. Akdağ, C. Zhu, L. Kou, S. D. Worley, and T. S. Huang, “Electrospun polyacrylonitrile nanofibrous biomaterials,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, pp. 385–390, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57659.