Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Implicit large eddy simulation of vitiation effects in supersonic air/H-2 combustion
Date
2019-06-01
Author
Karaca, Mehmet
Zhao, Song
Fedioun, Ivan
Lardjane, Nicolas
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
0
downloads
Cite This
This paper presents and discusses Implicit Large Eddy Simulation (ILES) results of vitiation effects in ground tests of supersonic air/H-2 combustion. This work is useful for realistic extrapolation of ground test data to flight conditions. The high-enthalpy flow configuration retained, typical of scramjet engines, is the Mach 2 LAERTE combustion chamber of the French aerospace lab ONERA. The supersonic air co-flow is preheated by burning a small amount of hydrogen in oxygen-enriched air. Stable numerical simulations of such high-speed turbulent shocked flows require dissipative numerics that interact with molecular diffusion. The premature ignition in the case of vitiation by oxygen atom can be observed using reduced finite rate chemistry in the quasi-laminar approximation, i.e. without any subgrid combustion model, because the Damkohler number (ratio of turbulent to chemical time scale) is less than unity. Turbulent time scales are only moderately affected by vitiation, but chemical time scales are significantly reduced. (C) 2019 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/57690
Journal
AEROSPACE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1016/j.ast.2019.03.050
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Aerothermodynamic modeling and simulation of gas turbines for transient operating conditions
Koçer, Gülru; Uzol, Oğuz; Department of Aerospace Engineering (2008)
In this thesis, development of a generic transient aero-thermal gas turbine model is presented. A simulation code, gtSIM is developed based on an algorithm which is composed of a set of differential equations and a set of non-linear algebraic equations representing each gas turbine engine component. These equations are the governing equations which represents the aero-thermodynamic process of the each engine component and they are solved according to a specific solving sequence which is defined in the simul...
Near-surface topology of unmanned combat air vehicle planform: Reynolds number dependence
Elkhoury, M; Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2005-09-01)
The Reynolds number dependence of the near-surface flow structure and topology on a representative unmanned combat air vehicle planform is characterized using a technique of high-image-density particle image velocimetry, to complement classical dye visualization. Patterns of streamline topology, including bifurcation lines, as well as contours of streamwise and transverse velocity, surface-normal vorticity, and Reynolds stress correlation, all immediately adjacent to the surface of the planform, provide qua...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Aerodynamic design and optimization of horizontal axis wind turbines by using bem theory and genetic algorithm
Ceyhan, Özlem; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2008)
An aerodynamic design and optimization tool for wind turbines is developed by using both Blade Element Momentum (BEM) Theory and Genetic Algorithm. Turbine blades are optimized for the maximum power production for a given wind speed, a rotational speed, a number of blades and a blade radius. The optimization variables are taken as a fixed number of sectional airfoil profiles, chord lengths, and twist angles along the blade span. The airfoil profiles and their aerodynamic data are taken from an airfoil datab...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Karaca, S. Zhao, I. Fedioun, and N. Lardjane, “Implicit large eddy simulation of vitiation effects in supersonic air/H-2 combustion,”
AEROSPACE SCIENCE AND TECHNOLOGY
, pp. 89–99, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57690.