Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optical Characterization of Amorphous Hydrogenated Carbon (a-C:H) Thin Films Prepared by Single RF Plasma Method
Date
2015-06-01
Author
Mansuroğlu, Doğan
GÖKŞEN, KADİR
Bilikmen, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
Methane (CH4) plasma was used to produce amorphous hydrogenated carbon (a-C:H) films by a single capacitively coupled radio frequency (RF) powered plasma system. The system consists of two parallel electrodes: the upper electrode is connected to 13.56 MHz RF power and the lower one is connected to the ground. Thin films were deposited on glass slides with different sizes and on silicon wafers. The influence of the plasma species on film characteristics was studied by changing the plasma parameters. The changes of plasma species during the deposition were investigated by optical emission spectroscopy (OES). The structural and optical properties were analyzed via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV-visible spectroscopy, and the thicknesses of the samples were measured by a profilometer. The sp(3)/sp(2) ratio and the existing H atoms play a significant role in the determination of the chemical properties of thin films in the plasma. The film quality and deposition rate were both increased by raising the power and the flow rate.
Subject Keywords
Condensed Matter Physics
URI
https://hdl.handle.net/11511/62746
Journal
PLASMA SCIENCE & TECHNOLOGY
DOI
https://doi.org/10.1088/1009-0630/17/6/09
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Optoelectronic properties of Tl3InSe4 single crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Informa UK Limited, 2010-01-01)
The crystal structure, temperature-dependent electrical conductivity, Hall coefficient, current-voltage characteristics, absorption spectra and temperature- and illumination-dependent photoconductivity of Tl3InSe4 single crystals were investigated. Tl3InSe4 crystallises in a body-centred lattice with tetragonal symmetry and belongs to the space group [image omitted]. The crystals are extrinsic p-type semiconductors and exhibit a conductivity conversion from p- to n-type at a critical temperature, Tc, of 283...
Space-charge-limited currents and photoconductive properties of Tl2InGaSe4 layered crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Informa UK Limited, 2008-01-01)
The extrinsic electronic parameters of Tl2InGaSe4 layered crystals were investigated through measurement of the temperature-dependent dark conductivity, space-charge-limited currents and photoconductivity. Analysis of the dark conductivity reveals the existence of two extrinsic energy levels at 0.40 and 0.51 eV below the conduction band edge, which are dominant above and below 260 K, respectively. Current-voltage characteristics show that the one at 0.51 eV is a trapping energy level with a concentration of...
Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Crystallization and phase separation mechanism of silicon oxide thin films fabricated via e-beam evaporation of silicon monoxide
Gunduz, Deniz Cihan; Tankut, Aydin; Sedani, Salar; Karaman, Mehmet; Turan, Raşit (2015-04-29)
In this work, silicon oxide thin films were synthesized via e-beam evaporation of silicon monoxide. Subsequent annealing experiments were carried out to induce Si nanocrystals (Si NCs) formation. A broad range of annealing durations and temperatures were studied. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to study the mechanism of phase separation in silicon oxide films and crystallization of Si. Raman spectroscopy results show...
Transport studies of carbon-rich a-SiCx : H film through admittance and deep-level transient spectroscopy measurements
Atilgan, I; Ozdemir, O; Akaoglu, B; Sel, K; Katircioglu, B (Informa UK Limited, 2006-07-01)
An intrinsic, carbon- rich a- SiCx: H thin film, prepared by the plasma- enhanced chemical vapour deposition ( PECVD) technique, has been studied mainly by AC admittance and small- pulse deep- level transient spectroscopy ( DLTS) measurements on an Al/ a- SiCx: H/ p- Si metal - insulator - semiconductor ( MIS) structure. The effects of measurement temperature, voltage and small- signal AC modulation frequency on the MIS capacitor are qualitatively and quantitatively described. The kinetics of charge injecti...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Mansuroğlu, K. GÖKŞEN, and S. Bilikmen, “Optical Characterization of Amorphous Hydrogenated Carbon (a-C:H) Thin Films Prepared by Single RF Plasma Method,”
PLASMA SCIENCE & TECHNOLOGY
, pp. 488–495, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62746.