Free vibrations of bonded single lap joints in composite, shallow cylindrical shell panels

2005-12-01
Yuceoglu, U
Ozerciyes, V
The problem of free vibrations of bonded single lap joints in composite, shallow circular cylindrical shells or shell panels is investigated. The shallow circular cylindrical shell adherends are considered to be made of dissimilar, orthotropic materials adhesively bonded by an in-between, very thin, yet flexible adhesive layer. In the theoretical formulation, a first-order shear deformation shell theory is employed. The complete set of shallow shell equations, in combination with the adhesive-layer equations, is first reduced to a governing system of first-order ordinary differential equations in the state vector form. Then, the resulting equations are integrated by the modified transfer matrix method (with interpolation polynomials and/or Chebyshev polynomials) and the natural frequencies and the modes of the lap joint system are obtained. It was found that the hard and the soft adhesive-layer elastic constants significantly influence the natural frequencies of the shallow shell bonded lap joint system. Also, the effects of some other important parameters on the natural frequencies and the mode shapes are presented.
AIAA JOURNAL

Suggestions

FREE-VIBRATION ANALYSIS OF LAMINATED COMPOSITE TRUNCATED CIRCULAR CONICAL SHELLS
Kayran, Altan (1990-07-01)
An analysis is presented for the free vibration characteristics of isotropic and laminated composite truncated circular conical shells including transverse shear deformation. All components of translatory and rotatory inertia are included. The applicability of linear shell theory due to Reissner is assumed, and governing equations are solved for the natural frequencies and mode shapes by using a combination of modal iteration and transfer matrix approach for different boundary conditions. Natural frequencie...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Near-surface topology and flow structure on a delta wing
Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2004-02-01)
The streamlines, and the corresponding patterns of velocity and vorticity, are characterized on a plane immediately adjacent to the surface of a delta wing using a laser-based technique of high-image-density particle image velocimetry. This technique provides the sequence of instantaneous states, as well as the corresponding time-averaged state, of the near-surface streamline topology and the associated critical points. These topological features are interpreted in terms of patterns of averaged and unsteady...
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Citation Formats
U. Yuceoglu and V. Ozerciyes, “Free vibrations of bonded single lap joints in composite, shallow cylindrical shell panels,” AIAA JOURNAL, pp. 2537–2548, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65785.