Biocompatibility of Accelerated Mineral Trioxide Aggregate on Stem Cells Derived from Human Dental Pulp.

Kulan, Pinar
Karabiyik, Ozge
Kargul, Betul
The aim of this study was to evaluate the effects of several additives on the setting time and cytotoxicity of accelerated-set mineral trioxide aggregate (MTA) on stem cells of human dental pulp. ProRoot white MTA (WMTA) (Dentsply Tulsa Dental, Johnson City, TN) was mixed with various additives including distilled water, 2.5% disodium hydrogen phosphate (Na2HPO4) (Merck, Darmstadt, Germany), K-Y Jelly (Johnson & Johnson, Markham, ON, Canada), and 5% and 10% calcium chloride (CaCl2) (Merck). The setting times were evaluated using a Vicat apparatus (Alsa Lab, Istanbul, Turkey). Human dental pulp stem cells were isolated and seeded into 48-well plates at 2 x 10(3) cells per well and incubated with MTA samples for 24 hours, 3 days, and 7 days. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. MTA mixed with 10% CaCl2 showed the lowest setting time (P < .05). According to the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sullophenyl)-2H-tetrazolium results on the 1st, 3rd, and 7th days, a statistically significant difference was found (P < .05) between MTA groups and the control group. MTA mixed with K-Y Jelly in all groups showed the lowest cell viability at all time points (P < .05). The cell viability of MTA mixed with distilled water, 5% CaCl2, 10% CaCl2, and Na2HPO4 increased significantly through time (P < .05). This in vitro study found MTA mixed with 5% and 10% CaCl2 and Na2HPO4 is biocompatible with dental pulp stem cells in terms of cell viability. Further in vitro and in vivo investigations are required to prove the clinical applications of MTA mixed with various additives.


Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications
Rad, Rezai Moonesi; Alshemary, Ammar Zeıdan Ghaılan; Evis, Zafer; Keskin, Dilek; Altunbas, Korhan; Tezcaner, Ayşen (2018-06-01)
In this article, bioactive glass nanoparticles (BG-NPs) doped with boron were synthesized and characterized to evaluate their effects on human dental pulp stem cells (hDPSCs). All synthesized BGs were nano-sized and amorphous in nature. They showed the expected characteristic functional groups and composition close to the designed ones by microstructural characterizations. Porositimetry analysis revealed that increase of boron in the BG composition caused a decrease in the specific surface area, average por...
Bioactive agent loaded hydrogel systems for dental tissue engineering applications
Atila, Deniz Hazal; Tezcaner, Ayşen; HASIRCI, VASIF; Department of Engineering Sciences (2021-9-07)
Use of tissue engineered oral restoration products is currently a popular approach for treating dental defects that adversely affect oral health in ageing populations. Among scaffolds composed of long-lasting porous ceramics and biodegradable natural or synthetic polymers with varying service lives, injectable hydrogels attract attention to regenerate dental pulp due to the capability of filling non-uniform voids such as pulp cavity. In this study, two types of injectable hydrogels were formulized by design...
Collagen/PEO/gold nanofibrous matrices for skin tissue engineering
Akturk, Omer; Keskin, Dilek (The Scientific and Technological Research Council of Turkey, 2016-01-01)
As a novel approach in skin tissue engineering, gold nanoparticles (AuNPs) were synthesized and incorporated at different concentrations into collagen/PEO nanofibrous matrices in this study. The group containing 14.27 ppm AuNPs (CM-Au) had the best nanofibrous morphology. CM-Au was cross-linked with glutaraldehyde vapor (CM-AuX). All groups were disrupted in collagenase in 2 h, but cross-linked groups and Matriderm (R) resisted hydrolytic degradation for 7 and 14 days, respectively. Due to its small pores a...
Recombinant therapeutic protease production by Bacillus sp.
Korkmaz, Nuriye; Çalık, Pınar; Department of Chemical Engineering (2007)
The first aim of this study is the development of extracellular recombinant therapeutic protease streptokinase producing Bacillus sp., and the second aim is to determine fermentation characteristics for streptokinase production. In this context, the signal (pre-) DNA sequence of B.licheniformis (DSM1969) extracellular serine alkaline protease enzyme gene (subC: Acc. No. X03341) was ligated to 5’ end of the streptokinase gene (skc: Acc. No. S46536) by SOE (Gene Splicing by Overlap Extension) method through P...
Poly( amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering
Svobodova, Jana; Proks, Vladimir; Karabiyik, Ozge; Koyuncu, Ayse Ceren Calikoglu; Kose, Gamze Torun; Rypacek, Frantisek; Studenovska, Hana (Wiley, 2017-03-01)
In this study, fibrous scaffolds based on poly(gamma-benzyl-L-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 mu m were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an i...
Citation Formats
P. Kulan, O. Karabiyik, G. KÖSE, and B. Kargul, “Biocompatibility of Accelerated Mineral Trioxide Aggregate on Stem Cells Derived from Human Dental Pulp.,” JOURNAL OF ENDODONTICS, pp. 276–279, 2016, Accessed: 00, 2020. [Online]. Available: