Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimization of n(+) nc-Si:H and a-SiNx:H layers for their application in nc-Si:H TFT
Date
2011-02-25
Author
ANUTGAN, TAMİLA
Anutgan, Mustafa
Atilgan, Ismail
Katircioglu, Bayram
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
0
downloads
Cite This
The n-type doped silicon thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) technique at high and low H-2 dilutions. High H-2 dilution resulted in n(+) nanocrystalline silicon films (n(+) nc-Si:H) with the lower resistivity (rho similar to 0.7 Omega cm) compared to that of doped amorphous silicon films (similar to 900 0 cm) grown at low H-2 dilution. The change of the lateral rho of n(+) nc-Si:H films was measured by reducing the film thickness via gradual reactive ion etching. The rho values rise below a critical film thickness, indicating the presence of the disordered and less conductive incubation layer. The 45 nm thick n(+) nc-Si:H films were deposited in the nc-Si:H thin film transistor (TFT) at different RF powers, and the optimum RF power for the lowest resistivity (similar to 92 Omega cm) and incubation layer was determined. On the other hand, several deposition parameters of PECVD grown amorphous silicon nitride (a-SiNx:H) thin films were changed to optimize low leakage current through the TFT gate dielectric. Increase in NH3/SiH4 gas flow ratio was found to improve the insulating property and to change the optical/structural characteristics of a-SiNx:H film. Having lowest leakage currents, two a-SiNx:H films with NH3/SiH4 ratios of similar to 19 and similar to 28 were used as a gate dielectric in nc-Si:H TFTs. The TFT deposited with the NH3/SiH4 similar to 19 ratio showed higher device performance than the TFT containing a-SiNx:H with the NH3/SiH4 28 ratio. This was correlated with the N-H/Si-H bond concentration ratio optimized for the TFT application.
Subject Keywords
Instrumentation
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/67612
Journal
VACUUM
DOI
https://doi.org/10.1016/j.vacuum.2010.12.014
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
AMORPHOUS-TO-CRYSTALLINE TRANSITION OF SELENIUM THIN-FILMS DEPOSITED ONTO ALUMINUM SUBSTRATES
Özenbaş, Ahmet Macit (Elsevier BV, 1990-01-01)
The crystallization of amorphous selenium (a-Se) films prepared by vacuum deposition at < 10−5torr onto aluminum substrates at 20°C was examined. The amorphous-to-crystalline transition was obtained by annealing the films between 70–85°C. The crystalline structures resulting from annealing at different temperatures have been identified by SEM (Scanning Electron Microscopy). X-ray and TEM (Transmission Electron Microscopy) studies revealed that these crystals were of hexagonal structure. The thicknesses of t...
Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition
KARAMAT, SHUMAİLA; Sonusen, S.; ÇELİK, ÜMİT; UYSALLI, YİĞİT; Oral, Ahmet (Elsevier BV, 2016-04-15)
In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH),...
Frequency dependence of conductivity in intrinsic amorphous silicon carbide film, assessed through admittance measurement of metal insulator semiconductor structure
Ozdemir, O; Atilgan, I; Akaoglu, B; Sel, K; Katircioglu, B (Elsevier BV, 2006-02-21)
A slightly carbon rich hydrogenated amorphous silicon carbide (a-SiCx:H) film was deposited by 13.56 MHz plasma enhanced chemical vapor deposition technique on p-type silicon (p-Si) wafer. Admittance analyses of the metal-insulator-semiconductor device (Al/a-SiCx:H/p-Si)from strong accumulation to strong inversion gate bias were achieved within a widespread frequency range (10(1)-10(6) Hz). An adequate equivalent circuit for each bias regime was proposed. The dependence of the ac conductivity both under str...
Ultra-thin Al2O3 capped with SiNx enabling implied open-circuit voltage reaching 720mV on industrial p-type Cz c-Si wafers for passivated emitter and rear solar cells
Koekbudak, Gamze; Kececi, Ahmet E.; Nasser, Hisham; Turan, Raşit (American Vacuum Society, 2021-01-01)
In this study, we report on the passivation quality of atomic layer deposition grown ultra-thin Al2O3 and Al2O3 capped with plasma-enhanced chemical vapor deposition deposited SiNx on Cz p-type wafers for the rear side of a passivated emitter and rear cell (PERC). Different activation recipes using N-2, forming gas (FG), and two-step annealing for different durations are investigated before SiNx deposition. The effect of different Al2O3 thicknesses and corresponding activation processes on the Al2O3/SiNx pa...
Sequential Deposition of Electrochromic MoO3 Thin Films with High Coloration Efficiency and Stability
Turel, Onur; Hacioglu, Serife O.; Coskun, Sahin; Toppare, Levent Kamil; Ünalan, Hüsnü Emrah (The Electrochemical Society, 2017-01-01)
Effect of thin film deposition route on the morphology and performance of molybdenum oxide (MoO3) based electrochromic devices was investigated. For the deposition of thin films, a sequential deposition method, which includes ultrasonic spray pyrolysis (USP) and thermal evaporation methods was used. Films deposited solely using either USP or thermal evaporation method were used as control samples. Following deposition, MoO3 thin films were then characterized using X-ray diffraction, X-ray photoelectron spec...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. ANUTGAN, M. Anutgan, I. Atilgan, and B. Katircioglu, “Optimization of n(+) nc-Si:H and a-SiNx:H layers for their application in nc-Si:H TFT,”
VACUUM
, pp. 875–880, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67612.