Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of the structural, magnetic, and cooling performance of AlFe thin film and AlFeGd nanometric giant magnetocaloric thin films
Date
2021-02-01
Author
Pat, Suat
Bayer, Özgür
Akay, Sertan Kemal
Mohammadigharehbagh, Reza
Kaya, Metin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
Giant magnetocaloric thin films are promising materials for new generation energy-efficient cooling systems. To investigate the cooling performance of AlFe and AlFeGd alloys, thin films have been deposited onto a glass substrate by thermionic vacuum arc (TVA) deposition system. TVA is a physical vapor deposition technology; it works in high vacuum and low-temperature conditions. AlFe and AlFeGd thin films are of significant importance for giant magnetocaloric materials. The surface and magnetic properties of a magnetic material are strongly dependent on the deposition process. In this paper, the structural, magnetic, and cooling performances of AlFe alloys with and without the Gd element have been investigated. When the Gd elements are added to AlFe alloys, the size of crystallite and the surface morphology of the giant nanometric magnetocaloric thin films are altered. The size of crystallite decreases to a lower value due to the Gd element added. According to the results of the elemental analysis, the elemental ratios of the AlFe and AlFeGd thin films were measured as (87:13) and (84:4:12), respectively, which are different from the ones reported previously. Magnetic cooling performance and magnetization strongly depend on these ratios. The mean values of crystallite size for the AlFe thin film and AlFeGd nanometric giant magnetocaloric thin film were measured as 50 nm and 12 nm, respectively. Following the Curie temperature of AlFeGd thin film, and the temperature difference it produces in the studied magnetic fields, 60 successive units of this material are assumed to form a magnetic refrigeration cycle. The coefficient of performance of this cycle is calculated to be 2.084—nearly two times better than the suggested cascade vapor-compression cycles in the same temperature range. This fact alongside the solid-state and environmentally friendly attributes of magnetic refrigeration cycles makes the AlFeGd thin films a strong candidate for accomplishing an efficient refrigeration system.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/88650
Journal
Journal Of Materials Science-Materials In Electronics
DOI
https://doi.org/10.1007/s10854-021-05285-y
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Investigation of band gap energy versus temperature for SnS 2 thin films grown by RF-magnetron sputtering
Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, Mehmet; Hasanlı, Nızamı (Elsevier BV, 2020-08-01)
SnS2 thin films grown by magnetron sputtering technique were characterized by structurally and optically in the present work. Crystalline parameters, atomic compositions, and surface characteristics of SnS2 thin films were presented according to results of applied structural techniques. Optical studies of SnS2 thin films were accomplished by Raman spectroscopy and transmission methods. Raman spectrum exhibited two modes around 198 and 320 cm−1. Transmittance data obtained for various temperatures between 10...
Investigations of thermal annealing role on the optical properties of Zn-In-Se thin films
Gullu, H. H.; COŞKUN, EMRE; Parlak, Mehmet (Elsevier BV, 2017-01-01)
Zn-In-Se (ZIS) thin films were prepared by sequential evaporation of its elemental sources on the glass substrates. The effect of thermal annealing under nitrogen environment on the optical properties of the films was discussed. In addition to the comparative study of three different annealing temperatures, the results were analyzed by relating with their structural and compositional characteristics. The optical analyses were based on the observed interference fringes on their transmission spectra of the fi...
Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode
Surucu, O. Bayrakli (Springer Science and Business Media LLC, 2019-11-01)
The main focus of this work is the structural and optical characterization of Ga-doped ZnO (GZO) thin film and determination of the device behavior of In/GZO/Si/Al diode. GZO thin films were deposited by RF magnetron sputtering technique from single target. The structural and morphological properties of GZO film were investigated by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. Optical properties of the fil...
Improving the absorption of solar cells using antenna-inspired cavities
Karaosmanoğlu, Barışcan; Tuygar, Emre; Topçuoğlu, Ulaş; Ergül, Özgür Salih (Wiley, 2019-08-01)
We present new types of nanocavities to improve the absorption of solar cells for energy harvesting in wide frequency ranges of the optical spectrum. Using a full‐wave approach, as opposed to the commonly used ray‐based modeling of the light, antenna‐inspired cavities with horn shapes are proposed and introduced. The effectiveness of the designed cavities is demonstrated in comparison to the conventional textures involving inverted pyramids and nanocones. Highly accurate numerical results show that solar‐ce...
Low temperature crystallization of amorphous silicon by gold nanoparticle
Karaman, M.; AYDIN, MURAT; Sedani, S. H.; ERTÜRK, KADİR; Turan, Raşit (Elsevier BV, 2013-08-01)
Single crystalline Si thin film fabricated on glass substrate by a process called Solid Phase Crystallization (SPC) is highly desirable for the development of high efficiency and low cost thin film solar cells. However, the use of ordinary soda lime glass requires process temperatures higher than 600 degrees C. Crystallization of Si film at around this temperature takes place in extremely long time exceeding 20 h in most cases. In order to reduce this long process time, new crystallization techniques such a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Pat, Ö. Bayer, S. K. Akay, R. Mohammadigharehbagh, and M. Kaya, “Investigation of the structural, magnetic, and cooling performance of AlFe thin film and AlFeGd nanometric giant magnetocaloric thin films,”
Journal Of Materials Science-Materials In Electronics
, pp. 1–10, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88650.