Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling transient flow in fractured shale reservoirs
Download
Ufuk_Thesis_Final.pdf
Date
2020-7
Author
Kılıçaslan, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
355
views
194
downloads
Cite This
Oil and gas production from shale reservoirs has been popular in North America for more than two decades. Commercial production from these extremely low permeability reservoirs is only achieved by multi-stage fractured horizontal wells. However, production performance of these wells is quite different than wells drilled in conventional reservoirs. Main distinct behavior seen in these wells is very long period of transient flow due to tightness of such reservoirs. This thesis questions validity of existing dual-porosity reservoir simulation technique for fractured shale reservoirs. In this respect, analytical solutions of pressure diffusion are presented for constant fracture pressure, constant rate and constant fracture pressure followed by linearly declining fracture pressure boundary conditions. According to these solutions, time-dependent shape factors are derived for 3D rectangular anisotropic matrix. Obtained shape factors and proposed simplifications are verified against fine scale single-porosity numerical models. Key finding from this study is that matrix – fracture transfer function (shape factor) is not constant, but rather decreases with time until reaching to a constant value. Therefore, dual-porosity simulation of fractured shale reservoirs using constant shape factor does not capture actual physics of matrix to fracture flow and yields inaccurate performance prediction. Also, proposed simplifications either as an empirical function or reduced form are robust in modeling this phenomenon. In addition to those, common features of decline curve analysis are tested for fractured shale reservoirs. Time dependency of b-parameter used in hyperbolic decline curve analysis is assessed for different reservoir properties by sensitivity analysis. Proposed empirical functions are used to obtain b-parameter for these cases and results are compared with actual ones.
Subject Keywords
Matrix–fracture transfer function
,
Shape factor
,
Shale reservoirs
,
Unsteady-state flow
,
Dual-porosity reservoir simulation
URI
https://hdl.handle.net/11511/91702
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Production peformance analysis of coal bed methane, shale gas, and tight gas reservoirs with different well trajectories and completion techniques
Erturk, Mehmet Cihan; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2013)
The large amount of produced oil and gas come from conventional resources all over the world and these resources are being depleted rapidly. This fact and the increasing oil and gas prices force the producing countries to find and search for new methods to recover more oil and gas. In order to meet the demand, the oil and gas industry has been turning towards to unconventional oil and gas reservoirs which become more popular every passing day. In recent years, they are seriously considered as supplementary ...
Assessing uncertainties and managing risks in shale gas projects
Tuğan, Murat Fatih; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2017)
New millennium’s oil industry met the production from shale oil and shale gas formations as a revolution, a game changer which certainly have taken attention of most investors. However, shale oil and shale gas projects generally have marginal economics, hence should be carefully analyzed from the economic standpoint. To analyze the economics of a shale oil or shale gas play, generating an economically recoverable resource (ERR) probability function showing the full uncertainty range is highly important. Fur...
Quantification of the uncertainties in shale gas reservoirs, a case study for Dadas shale formation
Topçu, Görkem Yusuf; Akın, Serkan; Department of Petroleum and Natural Gas Engineering (2013)
In the world of a decreasing conventional oil and gas resources and high energy prices, the unconventional gas resources has become a new focus of interest of the oil and gas industry. Especially, after the American shale gas revolution, both the industry and the economies are trying to explore and exploit their potential resources. Also, Turkey is one of the lucky countries that are known to have important shale gas resources at subsurface. Up to date, Dadas shale formation in the Southeastern Anatolian ba...
Modeling water quality impacts of petroleum contaminated soils in a reservoir catchment
Ünlü, Kahraman (2000-05-01)
Soil contamination due to spills or leaks of crude oils and refined hydrocarbons is a common problem. Estimation of spill volume is a crucial issue in order to determine the expected contaminating life span of contaminated soils. The direct procedure to determine the amount of hydrocarbon in soil is to measure the concentration of total petroleum hydrocarbon (TPH) in soil samples. The primary objective of this study was to assess the potential effects of oil contaminated soils on the water quality of Devege...
An Experimental investigation of the shale inhibition properties of a quaternary amine compound
Taş, Baki Tuğrul; Sınayuç, Çağlar; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2013)
Depleting oil reserves and increased costs of the oil and gas recoveries have created the need to drill in challenging formations. When drilled through, shale formations in particular always generated a wide variety of problems if conventional water-based muds are used. Furthermore, the complexity and variations in shales have compounded the task of developing suitable drilling fluids. In light of these problems, the study of shale properties and their interactions with fluids will continue to be a muchneed...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Kılıçaslan, “Modeling transient flow in fractured shale reservoirs,” Ph.D. - Doctoral Program, Middle East Technical University, 2020.