Optimal input design and system identification for an agile aircraft

2021-9
Millidere, Murat
This doctorate study aims to provide a methodology for developing aerodynamic and engine thrust models using simulated flight test data for the F16 fighter aircraft. An accurate and comprehensive representation of an aircraft's aerodynamic characteristics is required to design a flight control system or develop a high-fidelity flight simulator. Modern computational methods and wind tunnel testing can provide the aerodynamic database, but flight test data is required to obtain a more accurate and realistic aerodynamic database. As a result, system identification methods can characterize applied forces and moments acting on the aircraft. The F-16 nonlinear model also includes sensor models to simulate the actual flight data. The flight tests are carried out in the F16 simulation model using different excitations on the control surfaces. Simulation data is collected in predefined trim points. The equation error and output error methods are employed to analyze simulated data to estimate aerodynamic parameters in the time domain. The equation-error method is used firstly to identify aerodynamic parameters, and the results are then utilized as a starting point in the output-error process for fine-tuning. In general, thrust forces and moments are obtained from ground tests. The contribution of this doctoral study is to implement an iterative aerodynamic and thrust estimation approach in the absence of engine manufacturer data. The validation of resulting models is accomplished by comparing the measured flight data to the model’s predictions for identical control inputs, as specified by the Federal Aviation Administration (FAA).

Suggestions

Automatic Landing Flare Control Design by Model-Following Control and Flight Test on X-Plane Flight Simulator
Cetin, Ender; Kutay, Ali Türker (2016-07-20)
The aim of this study is to design a landing control system and test it on X-Plane flight simulator. Model-Following control and H-Infinity output feedback control methods are used to design the controller. In the flare part of the automatic landing system, it is desired to reduce the rate of descent in order to make aircraft touch down softly. This is accomplished by exponential decay trajectory. The trajectory which is drawn by the referenced model is followed by the linearized aircraft model. The error b...
Aerodynamic modeling and parameter estimation of a quadrotor helicopter
Kaya, Derya; Kutay, Ali Türker (2014-01-01)
This study focuses on aerodynamic modeling of a quadrotor helicopter and the estimation of the model parameters in wind tunnel tests for hover, vertical climb, and forward flight conditions. The motion of a quadrotor is mainly affected by the aerodynamic forces and moments generated by rotors. Accurate calculation of rotor loads is essential for high fidelity simulation of a quadrotor. Momentum and blade element theories are used to obtain expressions for rotor forces and moments for a traveling vehicle. Th...
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Genetic Algorithm based aerodynamic shape optimization tool for wind turbine blades and its implementation to helicopter blades
Polat, Özge; Sezer-uzol, Nilay; Tuncer, İsmail Hakkı (2014-01-01)
This study presents a methodology first built up for the aerodynamic shape optimization for wind turbine rotors and its modified version for a helicopter rotor in hover. The Genetic Algorithm (GA) coupled with an in-house Blade Element Momentum (BEM) tool is used in the design optimization process. The wind turbine blade optimization studies are performed for maximizing the power production at a given wind speed, rotor speed and rotor diameter, while for the helicopter blade optimization in hover, figure of...
Citation Formats
M. Millidere, “Optimal input design and system identification for an agile aircraft,” Ph.D. - Doctoral Program, Middle East Technical University, 2021.