Hemicellulose based biodegradable film production

Download
2005
Göksu, Emel Iraz
Xylan was extracted from cotton waste, characterized by DSC and TGA analysis and used in biodegradable film production. Pure cotton waste xylan did not form film. The presence of an unknown compound, as an impurity, yielded composite films. The unknown compound was determined as a phenolic compound, and most probably lignin, by using DSC and TGA analysis and Folin-Ciocalteau method. The effects of xylan concentration of the film forming solutions, glycerol (plasticizer) and gluten additions on thickness, mechanical properties, solubility, water vapor transfer rate, color and microstructure of the films were investigated. Films were formed within the concentration range of 8-14%. Below 8%, film forming solutions did not produce films, whereas xylan concentrations above 14% was not used because of high viscosity problems. The average tensile strength, strain at break, water vapor transfer rate and water solubility of the cotton waste xylan films were determined as about 1.3 MPa, 10%, 250 g/m2.24h and 99%, respectively. The addition of glycerol as the plasticizer resulted in a decrease in the tensile strength and an increase in strain at break. The change in water solubility due to the addition of glycerol was very small. In addition, water vapor transfer rate and the deviation of the color from the reference color for the plasticized films were found to be higher than the unplasticized films. The effect of addition of wheat gluten in cotton waste xylan film forming solutions on film formation was investigated at different concentration ratios. However, the incorporation of wheat gluten worsen the film quality.

Suggestions

Ultrasound assisted extraction of lipids and antioxidants from wheat germ
Melikoğlu, Mehmet; Kıncal, Suzan; Department of Chemical Engineering (2005)
The aim of this thesis work was to extract lipids and antioxidants from wheat germ using an ultrasonic bath. Alternative solvents: Ethanol, isopropanol and acetone were used for the extraction purposes and for the fat content determination hexane was used. Alternative solvents dissolve wax, phospholipids and some other proteins because of their polar nature which increased the yield. Since waxes and some proteins can be added to the soaps and creams which were made from carrier oils, obtaining these substan...
Hydrogen production by microorganisms in solar bioreactor
Uyar, Başar; Eroğlu, İnci; Department of Biotechnology (2008)
The main objective of this study is exploring the parameters affecting photobiological hydrogen production and developing anaerobic photobioreactor for efficient photofermentative hydrogen production from organic acids in outdoor conditions. Rhodobacter capsulatus and Rhodobacter sphaeroides strains were used as microorganisms. EU project “Hyvolution” targets to combine thermophilic fermentation with photofermentation for the conversion of biomass to hydrogen. In this study, the effluent obtained by dark fe...
Biosorption sites for lead [Pb (II)] in phanerochaete chrysosporium
Kaya, Levent; Özcengiz, Gülay; Department of Biology (2004)
Biosorption is a phenomenon involving the mechanisms that basically mediate heavy metal tolerance of microorganisms as well as sequestration of heavy metals from environment. Different classes of microorganisms have different biosorption capacities, as a result of the differences in composition and types of functional groups found on cell surfaces. The present study was undertaken to identify the molecular mechanisms for lead [Pb(II)] biosorption in the white-rot fungus, Phanerochaete chrysosporium. The met...
Heat treatment of iron ore agglomerates with microwave energy
Çırpar, Çiğdem; Arol, Ali İhsan; Department of Mining Engineering (2005)
Pelletizing is a size enlargement technique employed to process fine-grained iron-bearing concentrates and powder ores. Mechanical strength of fired pellets is important for handling. When the pellets undergo metallurgical processing, their mechanical strength is a measure of their resistance to degradation by breakage due to impacts and abrasion to which they are exposed in the upper part of the blast furnace. In this study, heat treatment of iron ore agglomerates with microwave energy is investigated. Fir...
In vitro evaluation of PLLA/PBS sponges as a promising biodegradable scaffold for neural tissue engineering
Kanneci Altinisik, Irem Ayse; Kök, Fatma Neşe; Yucel, Deniz; KÖSE, GAMZE (The Scientific and Technological Research Council of Turkey, 2017-01-01)
In tissue engineering, the use of poly-L-lactic acid (PLLA)/polybutylene succinate (PBS) blend for the construction of scaffold is very limited. Moreover, polymeric sponges fabricated from PLLA/PBS have not been studied for neural tissue engineering. In the present study, the potential of the utility of PLLA/PBS polymeric sponges seeded with Schwann cells was investigated. PLLA and PBS were blended in order to increase the processability and tune the crystallinity, porosity, and degradation rate of the resu...
Citation Formats
E. I. Göksu, “Hemicellulose based biodegradable film production,” M.S. - Master of Science, Middle East Technical University, 2005.