Fracture of a three layer elastic panel

Download
2005
Atay, Mehmet Tarık
The panel is symmetrical about both x- and y- axes. The central strip (strip1) of width 2h1 contains a central transverse crack of width 2a on x-axis. The two strips (strip2) contain transverse cracks of width c-b also on x-axis. The panel is subjected to axial loads with uniform intensities p1 and p2 in strip1 and strip2 , respectively at . Materials of all strips are assumed to be linearly elastic and isotropic. Due to double symmetry, only one quarter of the problem and will be considered. The solutions are obtained by using Fourier transforms both in x and y-directions. Summing several solutions is due to the necessity for sufficient number of unknowns in general expressions in order to be able to satisfy all boundary conditions of the problem. The conditions at the edges of the strips and at the interfaces are satisfied and the general expressions for a three layer panel become expressions for the panel with free edges. Use of remaining boundary conditions leads the formulation to a system of two singular integral equations. These equations are converted to a system of linear algebraic equations which is solved numerically

Suggestions

Prediction of plastic instability and forming limits in sheet metal forming
Şanay, Berkay; Oral, Süha; Kaftanoğlu, Bilgin; Department of Mechanical Engineering (2010)
The Forming Limit Diagram (FLD) is a widely used concept to represent the formability of thin metallic sheets. In sheet metal forming processes, plastic instability may occur, leading to defective products. In order to manufacture defect free products, the prediction of the forming limits of sheet metals is a very important issue. FLD’s can be obtained by several experimental, empirical and theoretical methods. However, the suitability and the accuracy of these methods for a given material may vary. In this...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Effect of surface roughness in microchannels on heat transfer
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2008)
In this study, effect of surface roughness on convective heat transfer and fluid flow in two dimensional parallel plate microchannels is analyzed by numerically. For this purpose, single-phase, developing, laminar fluid flow at steady state and in the slip flow regime is considered. The continuity, momentum, and energy equations for Newtonian fluids are solved numerically for constant wall temperature boundary condition. Slip velocity and temperature jump at wall boundaries are imposed to observe the rarefa...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Citation Formats
M. T. Atay, “Fracture of a three layer elastic panel,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.