Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications
Date
2014-01-01
Author
Hickey, Daniel J.
Ercan, Batur
Chung, Stanley
Ercan, Batur
Sun, Linlin
Geilich, Ben
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Regeneration of orthopedic soft and hard tissues, such as ligaments, bone, and the tendon-to-bone insertion site (TBI), is problematic due to a lack of suitable biomaterials which possess appropriate mechanical properties capable of promoting cellular functions in these tissues with limited regenerative capacity. Additionally, surgically implanted biomaterials are susceptible to bacterial infection, which can lead to implant failure, as well as further complications such as wide-spread infection. To address these issues, the current study investigated magnesium oxide (MgO) nanoparticles as novel materials to improve orthopedic tissue regeneration and reduce bacterial infection. Poly (l-lactic acid) (PLLA) was mineralized with MgO nanoparticles and tested for its mechanical properties, bactericidal efficacy, and its ability to support the growth of fibroblasts and osteoblasts. These MgO nanocomposites were compared to PLLA mineralized with nanoparticles of hydroxyapatite (HA), which have been shown to promote bone tissue growth and have been widely used as materials for bone tissue engineering. Results indicated for the first time that MgO nanoparticles increased the adhesion and proliferation of osteoblasts and fibroblasts compared to plain PLLA and PLLA-HA nanocomposites. Furthermore, MgO nanocomposites showed excellent bactericidal efficacy, killing nearly all of the bacteria seeded onto them, whereas HA nanocomposites showed increased bacterial growth compared to plain PLLA. Mechanical tensile testing revealed that the addition of a secondary nano-phase to plain PLLA increased the material elastic modulus and reduced material elasticity. Moreover, the mechanical properties could be tuned to match those of bone or ligament tissue by varying nanoparticle size and concentration within the composite.
Subject Keywords
Magnesium oxide
,
Tissue engineering
,
Bactericidal
,
Orthopedic
,
Mechanical properties
URI
https://hdl.handle.net/11511/34510
DOI
https://doi.org/10.1109/nebec.2014.6972815
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Wet spun PCL scaffolds for tissue engineering
Malikmammadov, Elbay; Hasırcı, Nesrin; Endoğan Tanır, Tuğba; Department of Micro and Nanotechnology (2017)
Scaffolds produced for tissue engineering applications are promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, fibrous poly(ε-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of β-tricalcium phosphate (β-TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial activity of CS was investi...
Cellulose-based electrospun scaffolds for tissue engineering applications
Atila, Deniz Hazal; Tezcaner, Ayşen; Yazgan Karataş, Ayten; Department of Engineering Sciences (2014)
With the use of a scaffold as support material, adequate number of cells, and bioactive molecules, tissue engineering applications intend to promote the regeneration of tissues or to replace failing or malfunctioning tissues/organs. In this study, electrospun 2D and 3D cellulose-based scaffolds were aimed to be produced with pullulan (PULL). Cellulose acetate (CA) and PULL powders in various ratios (80/20, 50/50, and 80/20) were dissolved in DMAc/DMSO solvent system and electrospun as either 2D or 3D forms....
PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-01-01)
Scaffolds produced for tissue engineering applications are proven to be promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, porous and fibrous poly(epsilon-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of tricalcium phosphate (TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial ...
Simvastatin loaded porous hydroxyapatite based microcarriers for bone tissue engineering /
Güldiken, Merve; Tezcaner, Ayşen; Durucan, Caner; Department of Biotechnology (2014)
Bone tissue engineering provides a new medical therapy as an alternative to conventional bone replacement grafts. Carriers designed for bone tissue engineering applications should be biocompatible, bioactive, and porous and should also meet certain minimal requirements to obtain functional engineered tissues. Polymers, ceramic materials and their composites are widely used for developing such carriers. The objective of this study was to develop and characterize a simvastatin (SIM) loaded porous hydroxyapati...
Polymeric scaffolds for bioactive agent delivery in bone tissue engineering
Uçar, Şeniz; Hasırcı, Nesrin; Yılgör, Pınar; Department of Chemistry (2012)
Tissue engineering is a multidisciplinary field that is rapidly emerging as a promising new approach in the restoration and reconstruction of tissues. In this approach, three dimensional (3D) scaffolds are of great importance. Scaffolds function both as supports for cell growth and depot for sustained release of required active agents (e.g. enzymes, genes, antibiotics, growth factors). Scaffolds should possess certain properties in accordance with usage conditions. Wet-spinning is a simple technique that ha...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. J. Hickey, B. Ercan, S. Chung, B. Ercan, L. Sun, and B. Geilich, “MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34510.