Uzaktan Algılamalı Görüntülerde Detaylı Nesne Tanıma için Çok Kaynaklı Derin Öğrenme

Uzaktan algılamada nesne tanıma probleminde geleneksel olarak birbirinden çok farklı karakteristiğe sahip nesne türlerinin birbirlerinden ayırt edilmesi üzerine durulmuştur. Uzaktan algılamadan elde edilebilecek anlamsal zenginlik, daha detaylı bir seviyede nesne tanıma probleminin ele alınmasıyla çok daha üst bir seviyeye getirilebilir. Ancak, geleneksel veri kümelerinde elde edilen mükemmele yakın sınıflandırmanın aksine, 40 ağaç türü üzerinde yürütülen detaylı ağaç sınıflandırma probleminde elde edilen sınıflandırma başarısı 35% seviyesini geçememiştir. Bu amaçla, (i) 40 ağaç veri kümesinde kullanılan RGB veri kaynağına, multi-spektral ve LIDAR veri kaynakları eklenmesi ve (ii) bu tür sadece kısmen hizalanmış (diğer bir deyişle, farklı görüntüler arası pikselden-piksele haritalamanın tam olarak bilinmediği) çok tipli veri kaynağını otomatik olarak hizalayabilen ve ortak olarak değerlendirebilen yenilikçi derin öğrenme yöntemlerinin geliştirilmesi hedeflenmektedir.