Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Explainable recommendations using extracted topics from item reviews and word matching
Download
METU_Thesis___Mert_Tunc_Explainable_Recommendations_2022.pdf
Date
2022-8-31
Author
Tunç, Mert
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
285
views
60
downloads
Cite This
Explanation in the recommendations is a crucial aspect in many applications to share reasoning and context with the users in addition to the recommended item. In this thesis, an innovative method for generating explainable recommendations is designed, implemented, and tested. The proposed design consists of extracting some phrases from the user's written review texts, assigning them to the users as preferences and items as their features, and then generating recommendations using the similarities between these assigned phrases. In such a design, since the recommendations are made using phrases that are understandable by people, the exact same phrases can be used to explain the reasoning behind the recommendations. Not many studies, however, uses keyword extraction techniques and word vectorizers to generate recommendations. Due to the lack of work in the area, it is decided to study such an algorithm that use keyword extraction and word vectorizers to uncover its capabilities. To evaluate the proposed recommender design, alongside of calculating numerical results for the quality of the recommender, a user study with 15 people is conducted. These experiments showed that people like 55% of the recommendations generated by the proposed method, while 58% of the explanations for the recommended items are found meaningful.
Subject Keywords
Explainable recommendations
,
Explainable machine learning
,
Topic extraction
,
KeyBERT
,
Yake
URI
https://hdl.handle.net/11511/99455
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Perceived need for course topics and student engagement in computer education
Öncü, Semiral; Şengel, Erhan; Delialioğlu, Ömer (2013)
Türkiye’deki bir üniversitede eğitim fakültesindeki öğrencilerin ders içerikleri hakkındaki algıları ile derse katılımı, başarısı, hazırbulunuşluğu ve bölümleri, ex-post-facto araştırma metodu yardımıyla araştırılmıştır. Şu sorulara cevap aranmıştır: (1) Bilgisayar okuryazarlığında öğrencilerin en çok ve en az ilgisini çeken konular nelerdir, (2) öğrencinin bölümü bu kararı etkilemekte midir ve (3) hazırbulunuşluk ve öğrencinin bölümü, öğrencinin başarısı ve derse katılımını nasıl etkiler? Birinci sınıfta o...
Evaluation of Construct Elicitation as a Research Method to Obtain Design-Relevant Data from Children
Süner, Sedef ; Erbuğ, Çiğdem (Middle East Technical University, Faculty of Architecture, 2016-8-10)
Understanding user requirements and how users give meaning to their own experiences related to products is a significant input in the design of products that are acceptable to the target users. This issue becomes more important when designing for children due to our adult preconceptions about what they can and cannot do, and what they like or do not like. Although incorporating children's input into design process has been well-acknowledged in research practices, the dominant tendency is to involve children...
Yönetim güçlendirmenin firmanın finansal performansı ve risk alma davranışı üzerindeki etkisi
İlhan Nas, Tülay; Çarkcı, Ayşegül (Orta Doğu Teknik Üniversitesi (Ankara, Turkey), 2015-12)
Çalışmanın temel amacı, yönetim güçlendirmenin hem firmanın finansal performansını hem de risk alma davranışını nasıl ve ne yönde etkilediği sorusuna gelişmekte olan ülke bağlamının yaratacağı farklılıklar göz önüne alınarak yanıt aramaktır. Vekalet kuramı ve temsil teorisi çerçevesinde geliştirilen araştırma hipotezleri 336 firmadan elde edilen ikincil veriler ışığında, bir dizi kontrol değişkeni de göz önüne alınarak, hiyerarşik regresyon analizi ile test edilmiştir. Analiz sonuçları, güçlendirilmiş yönet...
Topic-centric querying of web information resources
Altıngövde, İsmail Sengör; Ulusoy, O; Ozsoyoglu, G; Ozsoyoglu, ZM (2001-01-01)
This paper deals with the problem of modeling web information resources using expert knowledge and personalized user information, and querying them in terms of topics and topic relationships. We propose a model for web information resources, and a query language SQL-TC (Topic-Centric SQL) to query the model. The model is composed of web-based information resources (XML or HTML documents on the web), expert advice repositories (domain-expert-specified metadata for information resources), and personalized inf...
Semantic web enabled web services
Karakaş, İlker Murat; Doğaç, Asuman; Department of Information Systems (2002)
Günümüzde Web son derece büyük ve çoğunlukla statik bir bilgi kaynağı durumundadır. Bilgiye ulaşımda, bilgiden çıkarım yapmada ve bilgiyi yorumlamada asıl yük olması gerektiği gibi bilgisayarlara değil kullanıcılara düşmektedir. Ama Web statik metin ve grafiksel öğeler içeren bir depo olmaktan, bilgi sağlayan ve dış dünya üzerinde etkileri olan servisleri sunacak olan bir servis sağlayıcı olmaya doğru hızlı bir değişim göstermektedir. Web' e şimdikinden çok daha dinamik bir yapı sağlamaya çalışan iki yaklaş...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tunç, “Explainable recommendations using extracted topics from item reviews and word matching,” M.S. - Master of Science, Middle East Technical University, 2022.